259
Views
5
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Determination of the g-factors measured by EPR based on theoretical crystal field and superposition model analyses for lanthanide-based magnetically concentrated crystals – case study: double tungstates and molybdates

, &
Pages 224-246 | Received 03 Mar 2018, Accepted 30 Sep 2018, Published online: 22 Oct 2018

References

  • J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance, Elemental Theory and Practical Applications, Wiley, New York, 2007.
  • A. Bencini and D. Gatteschi, EPR of Exchange Coupled Systems, Springer, Berlin, 1990.
  • J. R. Pilbrow, Transition-Ion Electron Paramagnetic Resonance, Clarendon Press, Oxford, 1990.
  • F. E. Mabbs and C. Collison, Electron Paramagnetic Resonance of d Transition-metal Compounds, Elsevier, Amsterdam, 1992.
  • S. K. Misra (ed.), Multifrequency Electron Paramagnetic Resonance, Wiley-VCH, Weinheim, 2011.
  • O. Guillot-Noël, P. Goldner, P. Higel, and D. Gourier, A practical analysis of electron paramagnetic resonance spectra of rare earth ion pairs, J Phys Condens Matter. 16 (2004), pp. R1–R24. doi: 10.1088/0953-8984/16/3/R01
  • M. Buryi, V. V. Laguta, E. Mihóková, P. Novák, and M. Nikl, Electron paramagnetic resonance study of the Ce3+ pair centers in YAlO3:Ce scintillator crystals, Phys. Rev. B 92 (2015), pp. 224105-1–224105-10. doi: 10.1103/PhysRevB.92.224105
  • C. Laplane, E. Z. Cruzeiro, F. Fröwis, P. Goldner, and M. Afzelius, High-precision measurement of the Dzyaloshinsky-Moriya interaction between two rare-earth ions in a solid, Phys. Rev. Lett. 117 (2016), pp. 037203-1–037203-6. doi: 10.1103/PhysRevLett.117.037203
  • Y. Li, G. Chen, W. Tong, L. Pi, J. Liu, Z. Yang, X. Wang, and Q. Zhang, Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4, Phys. Rev. Lett. 115 (2015), pp. 167203-1–167203-6.
  • K. V. Zakharov, E. A. Zvereva, M. M. Markina, M. I. Stratan, E. S. Kuznetsova, S. F. Dunaev, P. S. Berdonosov, V. A. Dolgikh, A. V. Olenev, S. A. Klimin, L. S. Mazaev, M. A. Kashchenko, M. A. Ahmed, A. Banerjee, S. Bandyopadhyay, A. Iqbal, B. Rahaman, T. Saha-Dasgupta, and A. N. Vasiliev, Magnetic, resonance, and optical properties of Cu3Sm(SeO3)2O2Cl: A rare-earth francisite compound, Phys. Rev. B 94 (2016), pp. 054401-1–054401-11. doi: 10.1103/PhysRevB.94.054401
  • J. M. Baker, Interactions between ions with orbital angular momentum in insulators, Rep. Prog. Phys. 34 (1971), pp. 109–173. doi: 10.1088/0034-4885/34/1/303
  • J. M. Baker and D. Marsh, EPR measurements of interactions between pairs of Tm2+ ions in alkaline-earth fluorides, J. Phys. C Solid State Phys. 12 (1979), pp. 2847–2858. doi: 10.1088/0022-3719/12/14/020
  • K. L. Brower, H. J. Stapleton, and E. O. Brower, Electron spin resonance of Nd3+ pairs in LaCl3 and LaBr3, Phys. Rev. 146 (1966), pp. 233–243. doi: 10.1103/PhysRev.146.233
  • P. W. Anderson and P. R. Weiss, Exchange narrowing in paramagnetic resonance, Rev. Mod. Phys. 25 (1953), pp. 269–276. doi: 10.1103/RevModPhys.25.269
  • J. H. Van Vleck, The dipole broadening of magnetic resonance lines in crystals. Phys. Rev. 74 (1948), pp. 1168–1183. doi: 10.1103/PhysRev.74.1168
  • R. Kubo and K. Tomita, A general theory of magnetic resonance absorption, J. Phys. Soc. Japan 9 (1954), pp. 888–919. doi: 10.1143/JPSJ.9.888
  • M. Yokota and S. Koide, The exchange effects on the absorption spectrum by the paramagnetic crystal with anisotropic g-factors, J. Phys. Soc. Japan 9 (1954), pp. 953–960. doi: 10.1143/JPSJ.9.953
  • A. Palii, B. Tsukerblat, S. Klokishner, K. R. Dunbar, J. M. Clemente-Juan, and E. Coronado, Beyond the spin model: exchange coupling in molecular magnets with unquenched orbital angular momenta, Chem. Soc. Rev. 40 (2011), pp. 3130–3156. doi: 10.1039/c0cs00175a
  • R. Boča and R. Herchel, Antisymmetric exchange in polynuclear metal complexes, Coord. Chem. Rev. 254 (2010), pp. 2973–3025. doi: 10.1016/j.ccr.2010.06.012
  • O. Guillot-Noël, V. Metha, B. Viana, D. Gourier, M. Boukhris, and S. Jandl, Evidence of ferromagnetically coupled Nd3+ ion pairs in weakly doped Nd:LiYF4 and Nd:YVO4 crystals as revealed by high-resolution optical and EPR spectroscopies, Phys. Rev. B 61 (2000), pp. 15338–15346. doi: 10.1103/PhysRevB.61.15338
  • H. G. Liu and W. C. Zheng, Theoretical investigations of the optical spectra and EPR parameters for the isolated and pairs of trivalent ytterbium ions in Li6Y(BO3)3 crystal, Opt. Mater. 49 (2015), pp. 337–342. doi: 10.1016/j.optmat.2015.09.036
  • H. G. Liu and W. C. Zheng, A general way of analyzing EPR spectroscopy for a pair of magnetically equivalent lanthanide ions in crystal: A case study of BaY2F8:Yb3+ crystal, J. Appl. Phys. 123 (2018), pp. 025105-1–025105-9.
  • S. K. Hoffmann, W. W. Hilczer, and J. Goslar, Weak long-distance superexchange interaction and its temperature variations in copper(II) compounds studied by single crystal EPR, Appl. Magn. Reson. 7 (1994), pp. 289–321. doi: 10.1007/BF03162617
  • E. A. Boudreaux and L. N. Mulay (eds.), Theory and Applications of Molecular Paramagnetism, Wiley, New York, 1976.
  • H. Gudel, A. Stebler, and A. Furrer, Direct observation of singlet-triplet separation in dimeric Copper(II) acetate by neutron inelastic scattering spectroscopy, Inorg. Chem. 18 (1979), pp. 1021–1023. doi: 10.1021/ic50194a029
  • R. L. Carlin, Magnetochemistry, Springer-Verlag, Berlin, 1986.
  • J. Alam, Y. M. Jana, and A. Ali Biswas, Crystal-field study of magnetization and specific heat properties of frustrated pyrochlore Pr2Zr2O7, J. Magn. Magn. Mater. 416 (2016), pp. 391–400. doi: 10.1016/j.jmmm.2016.05.030
  • B. Kirste, A. Kruger, and H. Kurreck, ESR and ENDOR investigations of spin exchange in mixed galvinoxyl/nitroxide biradicals. Syntheses, J. Am. Chem. Soc. 104 (1982), pp. 3850–3858. doi: 10.1021/ja00378a013
  • R. Calvo, EPR measurements of weak exchange interactions coupling unpaired spins in model compounds, Appl. Magn. Reson. 31 (2007), pp. 271–299. doi: 10.1007/BF03166261
  • A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, Oxford, 1970.
  • D. J. Newman and B. Ng, The superposition model of crystal fields, Rep. Prog. Phys. 52 (1989), pp. 699–763. doi: 10.1088/0034-4885/52/6/002
  • H. G. Liu, W. C. Zheng, and W. L. Feng, Spin-Hamiltonian parameters of Yb3+ ions in trigonally-distorted octahedral sites of Na3Sc2V3O12 garnet, Philos. Mag. 88 (2008), pp. 3075–3080. doi: 10.1080/14786430802534560
  • M. T. Borowiec, I. Krynetski, V. P. Dyakonov, A. Nabiałek, T. Zayarnyuk, and H. Szymczak, Magnetostriction of rare earth double tungstates, New J. Phys. 8 (2006), pp. 124-1–124-9. doi: 10.1088/1367-2630/8/8/124
  • M. T. Borowiec, V. Dyakonov, A. Jędrzejczak, V. Markovich, A. Nabiałek, A. Pavlyuk, S. Piechota, A. Prokhorov, and H. Szymczak, Jahn-Teller type structural transition in KDy(WO4)2, Solid State Commun. 102 (1997), pp. 627–630. doi: 10.1016/S0038-1098(97)00038-0
  • I. M. Krygin, A. D. Prokhorov, V. P. Dyakonov, M. T. Borowiec, and H. Szymczak, Spin–spin interaction and the EPR spectrum of KDy(WO4)2, Phys Solid State 45 (2003), pp. 2083–2092. doi: 10.1134/1.1626741
  • V. Tkáč, A. Orendáčová, E. Čižmár, M. Orendáč, S. Zvyagin, A. G. Anders, V. Pavlík, and A. Feher, Experimental study of magnetic anisotropy in a layered CsNd(MoO4)2, J. Alloys Comp. 591 (2014), pp. 100–104. doi: 10.1016/j.jallcom.2013.12.190
  • G. Leniec, T. Skibiński, S. M. Kaczmarek, P. Iwanowski, and M. Berkowski, Growth and EPR properties of KSm(WO4)2 and KEr(WO4)2 single crystals, Cent. Eur. J. Phys. 10 (2012), pp. 500–505.
  • M. T. Borowiec, A. D. Prokhorov, I. M. Krygin, V. P. Dyakonov, K. Wozniak, Ł. Dobrzycki, T. Zayarnyuk, M. Barański, W. Domuchowski, and H. Szymczak, Crystal structure and EPR of the RbNd(WO4)2 single crystal, Physica B 371 (2006), pp. 205–209. doi: 10.1016/j.physb.2005.10.100
  • S. M. Kaczmarek, L. Macalik, H. Fuks, G. Leniec, T. Skibiński, and J. Hanuza, EPR and optical properties of KYb(WO4)2 and KTb0.2Yb0.8(WO4)2 single crystals, Cent. Eur. J. Phys. 10 (2012), pp. 492–499.
  • M. I. Kobets, E. N. Khats’ko, K. G. Dergachev, and P. S. Kalinin, Electronic paramagnetic resonance or rare-earth ions Yb3+, Pr3+, Dy3+, and Nd3+ in double molybdates and tungstenates, Low Temp. Phys. 36 (2010), pp. 611–617. doi: 10.1063/1.3482018
  • H. L. C. Feltham and S. Brooker, Review of purely 4f and mixed-metal nd-4f single-molecule magnets containing only one lanthanide ion, Coord. Chem. Rev. 276 (2014), pp. 1–33. doi: 10.1016/j.ccr.2014.05.011
  • D. Gatteschi, R. Sessoli, and L. Sorace, Magnetic bistability in lanthanide-based molecular systems: the role of anisotropy and exchange interactions, in Handbook on the Physics and Chemistry of Rare Earths Vol 50, J. C. G. Bünzli and V. K. Pecharsky, eds., Elsevier, Amsterdam, 2016, pp. 91–139.
  • J. L. Liu, K. Yuan, J. D. Leng, L. Ungur, W. Wernsdorfer, F. S. Guo, L. F. Chibotaru, and M. L. Tong, A six-coordinate ytterbium complex exhibiting easy-plane anisotropy and field-induced single-ion magnet behavior, Inorg. Chem. 51 (2012), pp. 8538–8544. doi: 10.1021/ic301115b
  • K. R. Meihaus and J. R. Long, Magnetic blocking at 10K and a dipolar-mediated avalanche in salts of the Bis(η8-cyclooctatetraenide) complex [Er(COT)2]−, J. Am. Chem. Soc. 135 (2013), pp. 17952–17957. doi: 10.1021/ja4094814
  • J. J. Baldoví, J. M. Clemente-Juan, E. Coronado, Y. Duan, A. Gaita-Ariño, and C. Giménez-Saiz, Construction of a general library for the rational design of nanomagnets and spin qubits based on mononuclear f-block complexes. The polyoxometalate case, Inorg. Chem. 53 (2014), pp. 9976–9980. doi: 10.1021/ic501867d
  • Q. M. Li, J. L. Liu, J. H. Jia, Y. C. Chen, J. Liu, L. F. Wang and M. L. Tong, ‘‘Half-sandwich’’ YbIII single-ion magnets with metallacrowns, Chem. Commun. 51 (2015), pp. 10291–10294. doi: 10.1039/C5CC03389F
  • C. Rudowicz and M. Karbowiak, Disentangling intricate web of interrelated notions at the interface between the physical (crystal field) Hamiltonians and the effective (spin) Hamiltonians, Coord. Chem. Rev. 287 (2015), pp. 28–63. doi: 10.1016/j.ccr.2014.12.006
  • G. K. Liu, Electronic energy level structure, in Spectroscopic Properties of Rare Earths in Optical Materials, G. K. Liu and B. Jacquier, eds., Springer, Berlin, 2005, pp. 1–94.
  • J. Dreiser, Molecular lanthanide single-ion magnets: from bulk to submonolayers. J Phys: Condens Matter 27 (2015) pp. 183203-1–183203-20.
  • B. G. Wybourne, Spectroscopic Properties of Rare Earths, Wiley, New York, 1965.
  • C. Rudowicz, P. Gnutek, and M. Karbowiak, Forms of crystal field Hamiltonians – A critical review, Opt. Mater. 33 (2011), pp. 1557–1561. doi: 10.1016/j.optmat.2011.01.012
  • H. G. Liu, Y. Mei, and W. C. Zheng, Link between EPR g-factors and local structure of the orthorhombic Ce3+ center in Y3Al5O12 and Lu3Al5O12 garnets, Chem. Phys. Lett. 554 (2012), pp. 214–218. doi: 10.1016/j.cplett.2012.10.003
  • Y. Y. Yeung , f-Spectra computer package; software by private communication.
  • M. F. Reid, C. K. Duan, and H. Zhou, Crystal-field parameters from ab initio calculations, J. Alloys Compd. 488 (2009), pp. 591–594. doi: 10.1016/j.jallcom.2008.12.004
  • L. Hu, M. F. Reid, C. K. Duan, S. Xia, and M. Yin, Extraction of crystal-field parameters for lanthanide ions from quantum-chemical calculations, J Phys: Condens Matter 23 (2011), pp. 045501-1–004501-8.
  • P. Novák, K. Knížek, and J. Kuneš, Crystal field parameters with Wannier functions: application to rare-earth aluminates, Phys. Rev. B 87 (2013), pp. 205139-1–205139-7.
  • F. Zhou and D. Åberg, Crystal-field calculations for transition-metal ions by application of an opposing potential, Phys. Rev. B 93 (2016), pp. 085123-1–085123-6.
  • P. Gnutek, M. Açıkgöz, and C. Rudowicz, Superposition model analysis of the zero-field splitting parameters of Fe3+ doped in TlInS2 crystal – Low symmetry aspects, Opt. Mat. 32 (2010), pp. 1161–1169. doi: 10.1016/j.optmat.2010.03.024
  • H. G. Liu, P. Guntek, and C. Rudowicz, Crystal field parameters for Yb3+ ions at orthorhombic centers in garnets – Revisited, J. Lumin. 131 (2011), pp. 2690–2696. doi: 10.1016/j.jlumin.2011.06.053
  • C. Rudowicz, Transformation relations for the conventional Okq and normalised O'kq stevens operator equivalents with k=1 to 6 and –k ≤ q ≤ k, J. Phys. C Solid State. 18 (1985), pp. 1415–1430. doi: 10.1088/0022-3719/18/7/009
  • H. G. Liu and W. C. Zheng, Theoretical investigations of the optical and EPR spectra for trivalent cerium and ytterbium ions in orthorhombic YF3 crystal, Physica B 496 (2016), pp. 15–19. doi: 10.1016/j.physb.2016.05.022
  • J. Wen, C. K. Duan, L. Ning, Y. Huang, S. Zhan, J. Zhang, M. Yin, Spectroscopic distinctions between two types of Ce3+ ions in X2−Y2SiO5: A theoretical investigation, J Phys Chem A 118 (2014), pp. 4988–4994. doi: 10.1021/jp5050207
  • M. V. Mokhosoev, F. P. Alekseev, and V. L. Butukhanov, Double Molybdates and Tungstenates, Nauka, Leningrad, 1981.
  • M. Shiotani, and S. Shimada, Principles and Applications of ESR Spectroscopy, Springer, Berlin, 2011.
  • C. Rudowicz, On standardization and algebraic symmetry of the ligand field Hamiltonian for rare earth ions at monoclinic symmetry sites, J. Chem. Phys. 84 (1986), pp. 5045–5058. doi: 10.1063/1.450654
  • C. Rudowicz and P. Gnutek, Intrinsically incompatible crystal (ligand) field parameter sets for transition ions at orthorhombic and lower symmetry sites in crystals and their implications, Physica B 405 (2010), pp. 113–132. doi: 10.1016/j.physb.2009.08.046
  • C. Rudowicz and P. Gnutek, Comparative analysis of crystal-field parameters for rare-earth ions at monoclinic sites in AB(WO4)2 crystals: I. Tm3+ in KGd(WO4)2 and KLu(WO4)2, and Ho3+ and Er3+ ions in KGd(WO4)2, J. Phys. Condens. Matter. 22 (2010), pp. 045501-1–045501-11. doi: 10.1088/0953-8984/22/4/045501
  • C. Rudowicz, M. Karbowiak, P. Gnutek, and M. Lewandowska, Comparative analysis of crystal-field parameters for rare-earth ions at monoclinic sites in AB(WO4)2 crystals: II. Pr3+ and Nd3+ ions in KRE(WO4)2 (RE=Y or Gd), Pr3+ ions in M+Bi(XO4)2 (M+ = Li or Na and X = W or Mo), and Nd3+ ions in NaBi(WO4)2 and AgNd(WO4)2, J. Phys. Condensed Matter. 26 (2014), pp. 065501-1–065501-15. doi: 10.1088/0953-8984/26/6/065501
  • P. Gnutek and C. Rudowicz, Diagonalization of second-rank crystal field terms for 3dN and 4fN ions at triclinic or monoclinic symmetry sites – case study: Cr4+ in Li2MgSiO4 and Nd3+ in β-BaB2O4, Opt. Mat. 31 (2008), pp. 391–400. doi: 10.1016/j.optmat.2008.05.013
  • C. Rudowicz and R. Bramley, On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry, J. Chem. Phys. 83 (1985), pp. 5192–5197. doi: 10.1063/1.449731
  • Vishwamittar and S. P. Puri, Investigation of the crystal field in rare-earth doped scheelites, J. Chem. Phys. 61 (1974), pp. 3720–3727. doi: 10.1063/1.1682557
  • C. Görller-Walrand and K. Binnemans, Rationalization of crystal-field parametrization, in Handbook on the Physics and Chemistry of Rare Earths Vol. 23, K. A. Gschneidner and L. Eyring, eds., Elsevier, Amsterdam, 1996, pp. 121–283.
  • H. G. Liu and W. C. Zheng, Crystal-field study for Yb3+ doped KY(WO4)2 crystal – Revisited based on superposition model, Opt. Mater. 36 (2013), pp. 575–580. doi: 10.1016/j.optmat.2013.10.041
  • C. Rudowicz, P. Gnutek, and M. Karbowiak, Reanalysis of crystal-field parameters for Nd3+ ions in Nd2BaCuO5 and Nd2BaZnO5 based on standardization, multiple correlated fitting technique, and dataset closeness, Phys. Rev. B 76 (2007), pp. 125116-1–125116-11. doi: 10.1103/PhysRevB.76.125116
  • A. Mech, Z. Gajek, M. Karbowiak, and C. Rudowicz, Crystal-field energy level analysis for Nd3+ ions at the low symmetry C1 site in [Nd(hfa)4(H2O)](N(C2H5)4) single crystals, J. Phys. Condens. Matter. 20 (2008), pp. 385205-1–385205-13. doi: 10.1088/0953-8984/20/38/385205
  • Y. Y. Yeung, Superposition model and its applications, in Optical Properties of 3d-Ions in Crystal: Spectroscopy and Crystal Field Analysis, N. M. Avram and M. G. Brik, eds., Tsinghua University Press, Beijing, 2013, pp. 95–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.