826
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First-principles calculations and Bader analysis of oxygen-deficient induced magnetism in cubic BaTiO3−x and SrTiO3−x

, , &
Pages 181-197 | Received 17 Apr 2018, Accepted 07 Oct 2018, Published online: 21 Oct 2018

References

  • J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Žutić, Semiconductor spintronics, Acta Phys. Slovaca. Rev. Tutor. 57 (2007), pp. 565–907.
  • I.S. Elfimov, S. Yunoki, and G.A. Sawatzky, Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials, Phys. Rev. Lett. 89 (2002), pp. 2–5. doi: 10.1103/PhysRevLett.89.216403
  • J.M.D. Coey, D0 ferromagnetism, Solid State Sci. 7 (2005), pp. 660–667. doi: 10.1016/j.solidstatesciences.2004.11.012
  • C.A. Díaz-Moreno, R. Farías-Mancilla, J.A. Matutes-Aquino, J. Elizalde-Galindo, F. Espinosa-Magaña, J. González-Hernández, and A. Hurtado-Macías, Magnetic behavior in LiNbO3 nanocrystallites caused by oxygen vacancies, J. Magn. Magn. Mater. 356 (2014), pp. 82–86. doi: 10.1016/j.jmmm.2013.12.029
  • K. Potzger, J. Osten, A.A. Levin, A. Shalimov, G. Talut, H. Reuther, S. Arpaci, D. Bürger, H. Schmidt, T. Nestler, and D.C. Meyer, Defect-induced ferromagnetism in crystalline SrTiO3, J. Magn. Magn. Mater. 323 (2011), pp. 1551–1562. doi: 10.1016/j.jmmm.2011.01.018
  • Z.Y. Chen, Z.Q. Chen, D.D. Wang, and S.J. Wang, Correlation between interfacial defects and ferromagnetism of BaTiO3 nanocrystals studied by positron annihilation, Appl. Surf. Sci. 258 (2011), pp. 19–23. doi: 10.1016/j.apsusc.2011.07.132
  • H. Trabelsi, M. Bejar, E. Dhahri, M. Sajieddine, M.A. Valente, and A. Zaoui, Effect of the oxygen deficiencies creation on the suppression of the diamagnetic behavior of SrTiO3 compound, J. Alloys Compd. 680 (2016), pp. 560–564. doi: 10.1016/j.jallcom.2016.04.145
  • M. Wang, G.L. Tan, and Q. Zhang, Multiferroic properties of nanocrystalline PbTiO3 ceramics, J. Am. Ceram. Soc. 93 (2010), pp. 2151–2154. doi: 10.1111/j.1551-2916.2010.03691.x
  • E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, and R. Blinc, Anion vacancy-driven magnetism in incipient ferroelectric SrTiO3 and KTaO3 nanoparticles, J. Appl. Phys. 094105 (2012), pp. 1–33.
  • D. Cao, M.-Q. Cai, W.-Y. Hu, P. Yu, and H.-T. Huang, Vacancy-induced magnetism in BaTiO3(001) thin films based on density functional theory, Phys. Chem. Chem. Phys. 13 (2011), pp. 4738. doi: 10.1039/c0cp02424d
  • M. Ishii, D. Ohta, M. Uehara, and Y. Kimishima, Vacancy induced ferromagnetism in nano-BaTiO3, Procedia Eng. 36 (2012), pp. 578–582. doi: 10.1016/j.proeng.2012.03.084
  • F. Yang, K.J. Jin, H. Bin Lu, M. He, C. Wang, J. Wen, and G. Yang, Oxygen vacancy induced magnetism in BaTiO3-δ and Nb:BaTiO3-δ thin films, Sci. China Physics, Mech. Astron. 53 (2010), pp. 852–855. doi: 10.1007/s11433-010-0187-x
  • R.V.K. Mangalam, M. Chakrabrati, D. Sanyal, A. Chakrabati, and A. Sundaresan, Identifying defects in multiferroic nanocrystalline BaTiO3 by positron annihilation techniques, J. Phys. Condens. Matter. 21 (2009), pp. 445902. doi: 10.1088/0953-8984/21/44/445902
  • S. Qin, D. Liu, Z. Zuo, Y. Sang, X. Zhang, F. Zheng, H. Liu, and X.G. Xu, UV-Irradiation-Enhanced ferromagnetism in BaTiO3, J. Phys. Chem. Lett. 1 (2010), pp. 238–241. doi: 10.1021/jz900131x
  • I.R. Shein and A.L. Ivanovskii, First principle prediction of vacancy-induced magnetism in non-magnetic perovskite SrTiO3, Phys. Lett. Sect. A Gen. At. Solid State Phys. 371 (2007), pp. 155–159.
  • M. Djermouni, A. Zaoui, S. Kacimi, and B. Bouhafs, Vacancy defects in strontium titanate: Ab initio calculation, Comput. Mater. Sci. 49 (2010), pp. 904–909. doi: 10.1016/j.commatsci.2010.06.045
  • E. Cao, Y. Zhang, H. Qin, L. Zhang, and J. Hu, Vacancy-induced magnetism in ferroelectric LiNbO3and LiTaO3, Phys. B Condens. Matter. 410 (2013), pp. 68–73. doi: 10.1016/j.physb.2012.10.030
  • R.I. Eglitis, Ab initio calculations of SrTiO3, BaTiO3, PbTiO3, CaTiO3, SrZrO3, PbZrO3 and BaZrO3 (001), (011) and (111) surfaces as well as F centers, polarons, KTN solid solutions and Nb impurities therein, Int J Mod Phys B. 28 (2014), pp. 1430009. doi: 10.1142/S0217979214300096
  • M. Sokolov, R.I. Eglitis, and S. Piskunov, Ab initio hybrid DFT calculations of BaTiO3 bulk and BaO-terminated (001) surface F-centers. Int J Mod Phys B 31 (2017), pp. 1750251. doi: 10.1142/S0217979217502514
  • Q.L. Fang, J.M. Zhang, and K.W. Xu, Vacancy and doping driven ferromagnetism in BaTiO3 perovskite, Phys. B Condens. Matter. 424 (2013), pp. 79–83. doi: 10.1016/j.physb.2013.04.058
  • Y. Zhang, J. Hu, E. Cao, L. Sun, and H. Qin, Vacancy induced magnetism in SrTiO3, J. Magn. Magn. Mater. 324 (2012), pp. 1770–1775. doi: 10.1016/j.jmmm.2011.12.036
  • R. Bader, A quantum theory of molecular structure and its applications, Chem. Rev. 91 (1991), pp. 893–928. doi: 10.1021/cr00005a013
  • R. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1994.
  • N. Bork, N. Bonanos, J. Rossmeisl, and T. Vegge, Ab initio charge analysis of pure and hydrogenated perovskites, J. Appl. Phys. 109 (2011), pp. 033702. doi: 10.1063/1.3536484
  • Y. Zhang, J. Wang, M. Sahoo, T. Shimada, and T. Kitamura, Mechanical control of magnetism in oxygen deficient perovskite SrTiO3, Phys. Chem. Chem. Phys. 17 (2015), pp. 27136–27144. doi: 10.1039/C5CP04310G
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996), pp. 11169–11186. doi: 10.1103/PhysRevB.54.11169
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999), pp. 1758–1775. doi: 10.1103/PhysRevB.59.1758
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B. 50 (1994), pp. 17953–17979. doi: 10.1103/PhysRevB.50.17953
  • D.D. Koelling, Linearized form of the APW method, J Phys Chem Solids. 33 (1972), pp. 1335–1338. doi: 10.1016/S0022-3697(72)80174-4
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • I. V Solovyev, P.H. Dederichs, and V.I. Anisimov, Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb, Phys. Rev. B. 50 (1994), pp. 16861–16871. doi: 10.1103/PhysRevB.50.16861
  • E. Koch, Exchange mechanisms, in Correlated Electrons: From Models to Materials, Forschungszentrum Jülich GmbH Jülich, Institute for Advanced Simulations, Düren, 2012. pp. 197–223.
  • E.K. Al-Shakarchi and N.B. Mahmood, Three techniques used to produce BaTiO3 fine powder, J. Mod. Phys. 2 (2011), pp. 1420–1428. doi: 10.4236/jmp.2011.211175
  • V.M. Longo, M. das Graca Sampaio Costa, A. Zirpole Simoes, I.L.V. Rosa, C.O.P. Santos, J. Andres, E. Longo, and J.A. Varela, On the photoluminescence behavior of samarium-doped strontium titanate nanostructures under UV light. A structural and electronic understanding, Phys. Chem. Chem. Phys. 12 (2010), pp. 7566–7579. doi: 10.1039/b923281h
  • W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys. Condens. Matter 21 (2009), pp. 084204. doi: 10.1088/0953-8984/21/8/084204
  • E. Sanville, S.D. Kenny, R. Smith, and G. Henkelman, Improved grid-based algorithm for Bader charge allocation, J. Comput. Chem. 28 (2007), pp. 899–908. doi: 10.1002/jcc.20575
  • S. Gudmundsdóttir, W. Tang, G. Henkelman, H. Jónsson, and E. Skúlason, Local density of states analysis using Bader decomposition for N2 and CO2 adsorbed on Pt(110)-(1 × 2) electrodes, J. Chem. Phys. 137 (2012), pp. 164705. doi: 10.1063/1.4761893
  • S. Zhang, D. Guo, M. Wang, M.S. Javed, and C. Hu, Magnetism in SrTiO3 before and after UV irradiation, Appl. Surf. Sci. 335 (2015), pp. 115–120. doi: 10.1016/j.apsusc.2015.02.035
  • S.S. Rao, Y.F. Lee, J.T. Prater, A.I. Smirnov and J. Narayan, Laser annealing induced ferromagnetism in SrTiO3 single crystal, Appl. Phys. Lett. 105 (2014), pp. 42403. doi: 10.1063/1.4891184
  • A. Lopez-Bezanilla, P. Ganesh, and P.B. Littlewood, Magnetism and metal-insulator transition in oxygen-deficient SrTiO3, Phys. Rev. B. 92 (2015), pp. 115112. doi: 10.1103/PhysRevB.92.115112

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.