487
Views
15
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Stable monolayer of the RuO2 structure by the Peierls distortion

ORCID Icon, &
Pages 376-385 | Received 26 Jan 2018, Accepted 05 Oct 2018, Published online: 29 Oct 2018

References

  • K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubunos, I. Grigorieva, and A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004), pp. 666–669. doi: 10.1126/science.1102896
  • M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (2013), pp. 263–275. doi: 10.1038/nchem.1589
  • C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008), pp. 385–388. doi: 10.1126/science.1157996
  • S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102 (2009), pp. 236804. doi: 10.1103/PhysRevLett.102.236804
  • K. Yang, S. Cahangirov, A. Cantarero, A. Rubio, and R. D'Agosta, Thermoelectric properties of atomically thin silicene and germanene nanostructures, Phys. Rev. B 89 (2014), pp. 125403. doi: 10.1103/PhysRevB.89.125403
  • M.E. Davila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys. 16 (2014), pp. 095002. doi: 10.1088/1367-2630/16/9/095002
  • G.G. Guzman-Verri and C.C. Lew Yan Voon, Electronic structure of silicon-based nanostructures, Phys. Rev. B 76 (2007), pp. 075131. doi: 10.1103/PhysRevB.76.075131
  • F. -f. Zhu, W. -j. Chen, Y. Xu, C. -l. Gao, D. -d. Guan, C. -h. Liu, D. Qian, S. -C. Zhang, and J. -f. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14 (2015), pp. 1020–1025. doi: 10.1038/nmat4384
  • H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Aktürk, R.T. Senger, and S. Ciraci, Monolayer honeycomb structures of group-IV elements and III–V binary compounds: First-principles calculations, Phys. Rev. B 80 (2009), pp. 155453. doi: 10.1103/PhysRevB.80.155453
  • P. Tsipas, S. Kassavetis, D. Tsoutsou, E. Xenogiannopoulou, E. Golias, A. Giamini, C. Granzianetti, D. Chiappe, A. Molle, M. Fanciulli, and A. Dimoulas, Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag (111), Appl. Phys. Lett. 103 (2013), pp. 251605. doi: 10.1063/1.4851239
  • C. Bacaksz, H. Sahin, H.D. Ozaydın, S. Horzum, R.T. Senger, and F.M. Peeters, Hexagonal AlN: Dimensional-crossover-driven band-gap transition, Phys. Rev. B 91 (2015), pp. 085430.
  • R.A. Gordon, D. Yang, E.D. Crozier, D.T. Jiang, and R.F. Frindt, Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension, Phys. Rev. B 65 (2002), pp. 125407. doi: 10.1103/PhysRevB.65.125407
  • A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. -Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10 (2010), pp. 1271–1275. doi: 10.1021/nl903868w
  • J.N. Coleman, M. Lotya, A. O'Neil, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, and I.V. Shvets, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science 331 (2011), pp. 568–571. doi: 10.1126/science.1194975
  • C. Ataca, H. Sahin, E. Aktürk, and S. Ciraci, Mechanical and electronic properties of MoS2 nanoribbons and their defects, J. Phys. Chem. C 115 (2011), pp. 3934–3941. doi: 10.1021/jp1115146
  • J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan, D.G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, and D.H. Cobden, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 pn junctions, Nat. Nanotech. 9 (2014), pp. 268–272. doi: 10.1038/nnano.2014.26
  • H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F.M. Peeters, Anomalous Raman spectra and thickness-dependent electronic properties of WSe2, Phys. Rev. B 87 (2013), pp. 165409.
  • N.R. Wilson, P.V. Nyugen, K. Seyler, P. Rivera, A.J. Marsden, Z.P.L. Laker, G.C. Constantinescu, V. Kandyba, A. Barinov, N.D.M. Hine, and X. Xu, Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures, Sci. Adv. 3 (2017), pp. e1601832. doi: 10.1126/sciadv.1601832
  • B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotech. 6 (2011), pp. 147–150. doi: 10.1038/nnano.2010.279
  • C. Ataca, M. Topsakal, E. Aktürk, and S. Ciraci, A comparative study of lattice dynamics of three-and two-dimensional MoS2, J. Phys. Chem. C 115 (2011), pp. 16354–16361. doi: 10.1021/jp205116x
  • H.P. Komsa and A.V. Kranshennikov, Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles, Phys. Rev. B 88 (2013), pp. 085318. doi: 10.1103/PhysRevB.88.085318
  • A. Ramasubramaniam, D. Naveh, and E. Towe, Tunable band gaps in bilayer transition-metal dichalcogenides, Phys. Rev. B 84 (2011), pp. 205325.
  • Y. Li, Z. Zhou, S. Zhang, and Z. Chen, MoS2 nanoribbons: High stability and unusual electronic and magnetic properties, J. Am. Chem. Soc. 130 (2008), pp. 16739–16744. doi: 10.1021/ja805545x
  • J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Band offsets and heterostructures of two-dimensional semiconductors, Appl. Phys. Lett. 102 (2013), pp. 012111. doi: 10.1063/1.4774090
  • S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.S. Huang, C.H. Ho, J. Yan, and D.F. Ogletree, Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling, Nat. Commun. 5 (2014), pp. 3252. doi: 10.1038/ncomms4252
  • H.D. Ozaydin, H. Sahin, J. Kang, F.M. Peeters, and R.T. Senger, Electronic and magnetic properties of 1T-TiSe2 nanoribbons, 2D Mater. 2 (2015), pp. 044002. doi: 10.1088/2053-1583/2/4/044002
  • F. Ersan, Y. Kadioglu, G. Gökoglu, O.Ü. Aktürk, and E. Aktürk, T-ZrS2 nanoribbons: Structure and electronic properties, Philos. Mag. 96 (2016), pp. 2074–2087. doi: 10.1080/14786435.2016.1189101
  • S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D.S. Narang, K. Liu, J. Ji, J. Li, and R. Sinclair, Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers, Nano Lett. 14 (2014), pp. 3185–3190. doi: 10.1021/nl500515q
  • W. Zhang, Z. Huang, W. Zhang, and Y. Li, Two-dimensional semiconductors with possible high room temperature mobility, Nano Res. 7 (2014), pp. 1731–1737. doi: 10.1007/s12274-014-0532-x
  • L. Hong, T. Charlie, A. Leen, C. Lili, and W.C. Alex, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15 (2016), pp. 48–53. doi: 10.1038/nmat4465
  • F. Ersan, S. Cahangirov, G. Gökoglu, A. Rubio, and E. Aktürk, Stable monolayer honeycomb-like structures of RuX2 (X=S, Se), Phys. Rev. B 94 (2016), pp. 155415. doi: 10.1103/PhysRevB.94.155415
  • C. Ataca, H. Sahin, and S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure, J. Phys. Chem. C 116 (2012), pp. 8983–8999. doi: 10.1021/jp212558p
  • F.A. Rasmussen and K.S.J. Thygesen, Computational 2D materials database: Electronic structure of transition-metal dichalcogenides and oxides, Phys. Chem. C 119 (2015), pp. 13169–13183. doi: 10.1021/acs.jpcc.5b02950
  • S. Deng, L. Wang, T. Hou, and Y.J. Li, Two-dimensional MnO2 as a better cathode material for lithium ion batteries, Phys. Chem. C 119 (2015), pp. 28783–28788. doi: 10.1021/acs.jpcc.5b10354
  • Y. Zhou and C. Geng, A MoO2 sheet as a promising electrode material: Ultrafast Li-diffusion and astonishing Li-storage capacity, Nanotechnology 28 (2017), pp. 105402. doi: 10.1088/1361-6528/aa56d0
  • G. Li, X. Yue, G. Luo, and J. Zhao, Electrode potential and activation energy of sodium transition-metal oxides as cathode materials for sodium batteries: A first-principles investigation, Comput. Mater. Sci. 106 (2015), pp. 15–22. doi: 10.1016/j.commatsci.2015.04.027
  • F. Ersan, H.D. Ozaydın, G. Gökoglu, and E. Aktürk, Theoretical investigation of lithium adsorption, diffusion and coverage on MX2 (M= Mo, W; X= O, S, Se, Te) monolayers, Appl. Surf. Sci. 425 (2017), pp. 301–306. doi: 10.1016/j.apsusc.2017.07.004
  • Y. Omomo, T. Sasaki, L.Z. Wang, and M. Watanabe, Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide, J. Am. Chem. Soc. 125 (2003), pp. 3568–3575. doi: 10.1021/ja021364p
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994), pp. 17953. doi: 10.1103/PhysRevB.50.17953
  • G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), pp. 11169. doi: 10.1103/PhysRevB.54.11169
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865. doi: 10.1103/PhysRevLett.77.3865
  • S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27 (2006), pp. 1787–1799. doi: 10.1002/jcc.20495
  • A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108 (2015), pp. 1. doi: 10.1016/j.scriptamat.2015.07.021
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188. doi: 10.1103/PhysRevB.13.5188
  • J. Heyd, G.E. Scuseria, and M.J. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, Chem. Phys. 118 (2003), pp. 8207–8215.
  • A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E.J. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, Chem. Phys. 125 (2006), pp. 224106.
  • I.B.J. Bersuker, The Jahn–Teller and pseudo Jahn–Teller effect in materials science, Phys.: Conf. Ser. 833 (2017), pp. 012001.
  • G. Henkelman, A. Arnaldsson, and H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 (2006), pp. 354–360. doi: 10.1016/j.commatsci.2005.04.010
  • M. Gajdos, K. Hummer, G. Kresse, J. Furthmller, and F. Bechstedt, Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B 73 (2006), pp. 045112. doi: 10.1103/PhysRevB.73.045112
  • M. Topsakal, S. Cahangirov, and S. Ciraci, The response of mechanical and electronic properties of graphane to the elastic strain, Appl. Phys. Lett. 96 (2010), pp. 091912. doi: 10.1063/1.3353968

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.