256
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Unravelling the local ring-like atomic pattern of twin boundary in an Mg-Zn-Y alloy

, , , , , , & show all
Pages 306-317 | Received 05 Jun 2018, Accepted 18 Oct 2018, Published online: 28 Oct 2018

References

  • M. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Mater. Trans. A 12 (1981), pp. 409–418. doi: 10.1007/BF02648537
  • J.W. Christian and S. Mahajan, Deformation twinning, Prog. Mater. Sci. 39 (1995), pp. 1–157. doi: 10.1016/0079-6425(94)00007-7
  • Y.T. Zhu, X.Z. Liao, and X.L. Wu, Deformation twinning in nanocrystalline materials, Prog. Mater. Sci. 57 (2012), pp. 1–62. doi: 10.1016/j.pmatsci.2011.05.001
  • M. Barnett, Twinning and the ductility of magnesium alloys Part I:“Tension” twins, Mat. Sci. Eng. 464 (2007), pp. 1–7. doi: 10.1016/j.msea.2006.12.037
  • M. Barnett, Twinning and the ductility of magnesium alloys Part II.“Contraction” twins, Mat. Sci. Eng. 464 (2007), pp. 8–16. doi: 10.1016/j.msea.2007.02.109
  • J. Wang, I.J. Beyerlein, J.P. Hirth, and C.N. Tome, Twinning dislocations on {(1)over-bar011} and {(1)over-bar013} planes in hexagonal close-packed crystals, Acta Mater. 59 (2011), pp. 3990–4001. doi: 10.1016/j.actamat.2011.03.024
  • J. Wang, I.J. Beyerlein, and J.P. Hirth, Nucleation of elementary {(1)over-bar 0 1 1} and {(1)over-bar 0 1 3} twinning dislocations at a twin boundary in hexagonal close-packed crystals, Model. Simul. Mater. Sc. 20 (2012), pp. 024001.
  • J.F. Nie, Y.M. Zhu, J.Z. Liu, and X.Y. Fang, Periodic segregation of solute atoms in fully coherent twin boundaries, Science 340 (2013), pp. 957–960. doi: 10.1126/science.1229369
  • J. Wang, L. Liu, C. Tomé, S. Mao, and S. Gong, Twinning and de-twinning via glide and climb of twinning dislocations along serrated coherent twin boundaries in hexagonal-close-packed metals, Mater. Res. Lett. 1 (2013), pp. 81–88.
  • B. Li and X.Y. Zhang, Global strain generated by shuffling-dominated {10(1)over-bar2} < 10(1)over-bar(1)over-bar > twinning, Scripta Mater. 71 (2014), pp. 45–48.
  • B.-Y. Liu, J. Wang, B. Li, L. Lu, X.-Y. Zhang, Z.-W. Shan, J. Li, C.-L. Jia, J. Sun, and E. Ma, Twinning-like lattice reorientation without a crystallographic twinning plane, Nat. Commun. 5 (2014).
  • B.Y. Liu, L. Wan, J. Wang, E. Ma, and Z.W. Shan, Terrace-like morphology of the boundary created through basal-prismatic transformation in magnesium, Scripta Mater. 100 (2015), pp. 86–89.
  • N. Stanford and M.R. Barnett, Effect of particles on the formation of deformation twins in a magnesium-based alloy, Mat. Sci. Eng. A-Struct 516 (2009), pp. 226–234. doi: 10.1016/j.msea.2009.04.001
  • J.D. Robson, N. Stanford, and M.R. Barnett, Effect of particles in promoting twin nucleation in a Mg-5 wt.% Zn alloy, Scripta Mater. 63 (2010), pp. 823–826. doi: 10.1016/j.scriptamat.2010.06.026
  • J.D. Robson, N. Stanford, and M.R. Barnett, Effect of precipitate shape on slip and twinning in magnesium alloys, Acta Mater. 59 (2011), pp. 1945–1956. doi: 10.1016/j.actamat.2010.11.060
  • M.A. Gharghouri, G.C. Weatherly, and J.D. Embury, The interaction of twins and precipitates in a Mg-7.7 at.% Al alloy, Philos. Mag. A. 78 (1998), pp. 1137–1149. doi: 10.1080/01418619808239980
  • X.H. Shao, Z.Q. Yang, and X.L. Ma, Interplay between deformation twins and basal stacking faults enriched with Zn/Y in Mg97Zn1Y2 alloy, Phil. Mag. Lett. 94 (2014), pp. 150–156. doi: 10.1080/09500839.2014.885123
  • X.H. Shao, S.J. Zheng, D. Chen, Q.Q. Jin, Z.Z. Peng, and X.L. Ma, Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy, Sci, Rep. 6 (2016), pp. 30096.
  • J.F. Nie, K. Oh-ishi, X. Gao, and K. Hono, Solute segregation and precipitation in a creep-resistant Mg-Gd-Zn alloy, Acta Mater. 56 (2008), pp. 6061–6076. doi: 10.1016/j.actamat.2008.08.025
  • J. Geng, Y.B. Chun, N. Stanford, C.H.J. Davies, J.F. Nie, and M.R. Barnett, Processing and properties of Mg-6Gd-1Zn-0.6Zr Part 2. Mechanical properties and particle twin interactions, Mat. Sci. Eng. A-Struct 528 (2011), pp. 3659–3665.
  • X.H. Shao, Z.Z. Peng, Q.Q. Jin, and X.L. Ma, Atomic-scale segregations at the deformation-induced symmetrical boundary in an Mg-Zn-Y alloy, Acta Mater. 118 (2016), pp. 177–186. doi: 10.1016/j.actamat.2016.07.054
  • X.Y. Zhang, B. Li, X.L. Wu, Y.T. Zhu, Q. Ma, Q. Liu, P.T. Wang, and M.F. Horstemeyer, Twin boundaries showing very large deviations from the twinning plane, Scripta Mater. 67 (2012), pp. 862–865. doi: 10.1016/j.scriptamat.2012.08.012
  • A. Jain and S.R. Agnew, Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet, Mater. Sci. Eng. a-Struct. Mater. Prop. Microstruct. Process. 462 (2007), pp. 29–36.
  • S.J. Pennycook, B. Rafferty, and P.D. Nellist, Z-contrast imaging in an aberration-corrected scanning transmission electron microscope, Microsc. Microanal. 6 (2002), pp. 343–352. doi: 10.1017/S1431927602000594
  • K. Hiraga, A. Yasuhara, and K. Saito, Dislocations in deformation microstructure of extruded Mg97Y2Zn1 alloy studied by high-angle annular detector dark-field scanning transmission electron microscopy (HAADF-STEM) ( vol 53, pg 1385, 2012), Mater. Trans. 53 (2012), pp. 1829–1829. doi: 10.2320/matertrans.M2012115
  • J.-K. Kim, S. Sandlöbes, and D. Raabe, On the room temperature deformation mechanisms of a Mg–Y–Zn alloy with long-period-stacking-ordered structures, Acta Mater. 82 (2015), pp. 414–423. doi: 10.1016/j.actamat.2014.09.036
  • B. Li, P.F. Yan, M.L. Sui, and E. Ma, Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg, Acta Mater. 58 (2010), pp. 173–179. doi: 10.1016/j.actamat.2009.08.066
  • J. Tu, X.Y. Zhang, J. Wang, Q. Sun, Q. Liu, and C.N. Tome, Structural characterization of {10(1)over-bar2} twin boundaries in cobalt, Appl. Phys. Lett. 103 (2013), pp. 051903 (051901-051904). doi: 10.1063/1.4817180
  • H. Zhou, G.M. Cheng, X.L. Ma, W.Z. Xu, S.N. Mathaudhu, Q.D. Wang, and Y.T. Zhu, Effect of Ag on interfacial segregation in Mg–Gd–Y–(Ag)–Zr alloy, Acta Mater. 95 (2015), pp. 20–29. doi: 10.1016/j.actamat.2015.05.020
  • Z. Yang, M.F. Chisholm, G. Duscher, X. Ma, and S.J. Pennycook, Direct observation of dislocation dissociation and Suzuki segregation in a Mg–Zn–Y alloy by aberration-corrected scanning transmission electron microscopy, Acta Mater. 61 (2013), pp. 350–359. doi: 10.1016/j.actamat.2012.09.067
  • T. Furuhara and H.I. Aaronson, Computer modeling of partially coherent Bcc - Hcp boundaries, Acta Metall. Mater. 39 (1991), pp. 2857–2872. doi: 10.1016/0956-7151(91)90103-8
  • J.P. Hirth and R.C. Pond, Steps, dislocations and disconnections as interface defects relating to structure and phase transformations, Acta Mater. 44 (1996), pp. 4749–4763. doi: 10.1016/S1359-6454(96)00132-2
  • A. Serra and D.J. Bacon, A new model for {10-12} twin growth in hcp metals, Philos. Mag. A. 73 (1996), pp. 333–343. doi: 10.1080/01418619608244386
  • B. Li and E. Ma, Atomic shuffling dominated mechanism for deformation twinning in magnesium, Phys. Rev. Lett. 103 (2009), pp. 035503. doi: 10.1103/PhysRevLett.103.035503
  • B.-Y. Liu, Z.-W. Shan, and E. Ma, Non-dislocation based room temperature plastic deformation mechanism in magnesium, in Magnesium Technology 2016, A. Singh, K. Solanki, M. V. Manuel, and N. R. Neelameggham, eds. Springer International Publishing, Cham, 2016, pp. 199–201.
  • S.Y. Ma, L.M. Liu, and S.Q. Wang, The predominant role of Zn6Y9 cluster in the long period stacking order structures of Mg-Zn-Y alloys: a first-principles study, J. Mater. Sci. 48 (2013), pp. 1407–1412. doi: 10.1007/s10853-012-6890-4
  • M. Yamasaki, M. Matsushita, K. Hagihara, H. Izuno, E. Abe, and Y. Kawamura, Highly-ordered 10H-type long-period stacking order phase in a Mg-Zn-Y ternary alloy, Scripta Mater. 78–79 (2014), pp. 13–16.
  • K. Kishida, K. Nagai, A. Matsumoto, A. Yasuhara, and H. Inui, Crystal structures of highly-ordered long-period stacking-ordered phases with 18R, 14H and 10H-type stacking sequences in the Mg–Zn–Y system, Acta Mater. 99 (2015), pp. 228–239. doi: 10.1016/j.actamat.2015.08.004
  • M. Tane, Y. Nagai, H. Kimizuka, K. Hagihara, and Y. Kawamura, Elastic properties of an Mg-Zn-Y alloy single crystal with a long-period stacking-ordered structure, Acta Mater. 61 (2013), pp. 6338–6351. doi: 10.1016/j.actamat.2013.06.041
  • M. Ashby, The deformation of plastically non-homogeneous materials, Phil. Mag. 21 (1970), pp. 399–424. doi: 10.1080/14786437008238426
  • A. Kumar, J. Wang, and C.N. Tome, First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals, Acta Mater. 85 (2015), pp. 144–154. doi: 10.1016/j.actamat.2014.11.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.