319
Views
14
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effects of the triple junction types on the grain boundary carbide precipitation in a nickel-based superalloy, a statistical analysis

, , , , &
Pages 318-327 | Received 21 Jun 2018, Accepted 18 Oct 2018, Published online: 29 Oct 2018

References

  • B.A. Young, X.S. Gao, T.S. Srivatsan, and P.J. King, The response of alloy 690 tubing in a pressurized water reactor environment, Mater. Des. 28 (2007), pp. 373–379. doi: 10.1016/j.matdes.2005.10.001
  • J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu, and S.C. Yao, The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of Inconel alloy 690, Metall. Trans A 20 (1989), pp. 2057–2067. doi: 10.1007/BF02650292
  • M.H. Lewis and B. Hattersley, Precipitation of M23C6 in austenitic steels, Acta Metall. 13 (1965), pp. 1159–1168. doi: 10.1016/0001-6160(65)90053-2
  • E.A. Trillo, and L.E. Murr, A TEM investigation of M23C6 carbide precipitation behaviour on varying grain boundary misorientions in 304 stainless steels, J. Mater. Sci. 33 (1998), pp. 1263–1271. doi: 10.1023/A:1004390029071
  • B. Sasmal, Mechanism of formation of lamellar M23C6 at and near twin boundaries in austenitic stainless steels, Metall. Trans. A 30 (1999), pp. 2791–2801. doi: 10.1007/s11661-999-0116-7
  • H.U. Hong, B.S. Rho, and S.W. Nam, Correlation of the M23C6 precipitation morphology with grain boundary characteristics in austenitic stainless steel, Mater. Sci. Eng. A 318 (2001), pp. 285–292. doi: 10.1016/S0921-5093(01)01254-0
  • K. Stiller, J.O. Nilsson, and K. Norring, Structure, chemistry, and stress corrosion cracking of grain boundaries in alloy 600 and 690, Metall. Mater. Trans. A 27 (1996), pp. 327–341. doi: 10.1007/BF02648410
  • T.M. Angeliu and G.S. Was, Behavior of grain boundary chemistry and precipitates upon thermal treatment of controlled purity alloy 690, Metall Trans. A 21 (1990), pp. 2097–2107. doi: 10.1007/BF02647868
  • Y.S. Lim, J.S. Kim, H.P. Kim, and H.D. Cho, The effect of grain boundary misorientation on the intergranular M23C6 carbide precipitation in thermally treated alloy 690, J. Nucl. Mater. 335 (2004), pp. 108–114. doi: 10.1016/j.jnucmat.2004.07.038
  • T.H. Lee, H.Y. Suh, S.K. Han, J.S. Noh, and J.H. Lee, Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes, J. Nucl. Mater. 479 (2016), pp. 85–92. doi: 10.1016/j.jnucmat.2016.06.038
  • E.L. Hall and C.L. Briant, The microstructure response of mill-annealed and solution-annealed Inconel 600 to heat treatment, Metall. Trans. A 16 (1985), pp. 1225–1236. doi: 10.1007/BF02670327
  • K.S. Min and S.M. Nam, Correlation between characteristics of grain boundary carbides and creep–fatigue properties in AISI 321 stainless steel, J. Nucl. Mater. 322 (2003), pp. 91–97. doi: 10.1016/S0022-3115(03)00274-5
  • S. Spigarelli, M. Cabibbo, E. Evangelista, and G. Palumbo, Analysis of the creep strength of a low-carbon AISI 304 steel with low-Σ grain boundaries, Mater. Sci. Eng. A 352 (2003), pp. 93–99. doi: 10.1016/S0921-5093(02)00903-6
  • H. Li, S. Xia, B.X. Zhou, W.J. Chen, and J.S. Ni, Evolution of carbide morphology precipitated at grain boundaries in Ni-based alloy 690, Acta Metall. Sin. 45 (2009), pp. 195–198.
  • H. Li, X.R. Liu, K. Zhang, 2017, Morphology evolution of grain boundary carbides precipitated near triple junctions in highly twinned Alloy 690, Environmental Degradation of Materials in Nuclear Power Systems, Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, 2017, pp. 509–517, Portland, USA
  • B.N. Du, L.Y. Sheng, C.Y. Cui, J.X. Yang, and X.F. Sun, Precipitation and evolution of grain boundary boride in a nickel-based superalloy during thermal exposure, Mater. Character. 128 (2017), pp. 109–114. doi: 10.1016/j.matchar.2017.03.038
  • B.N. Du, Z.Y. Hu, L.Y. Sheng, C.Y. Cui, J.X. Yang, Y.Z. Zheng, and X.F. Sun, Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy, J. Mater. Sci. Tech. 34 (2018), pp. 1805–1816. doi: 10.1016/j.jmst.2018.02.007
  • M. Kurban, U. Erb, and K.T. Aust, A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel, Scr. Mater. 54 (2006), pp. 1053–1058. doi: 10.1016/j.scriptamat.2005.11.055
  • Y. Zhou, K.T. Aust, U. Erb, and G. Palumbo, Effects of grain boundary structure on carbide precipitation in 304L stainless steel, Scr. Mater. 45 (2001), pp. 49–54. doi: 10.1016/S1359-6462(01)00990-3
  • B. Alexandreanu, B. Capell, and G.S. Was, Combined effect of special grain boundaries and grain boundary carbide on IGSCC of Ni-16Cr-9Fe-xC alloy, Mater. Sci. Eng. A 300 (2001), pp. 94–104. doi: 10.1016/S0921-5093(00)01705-6
  • S. Xia, B.X. Zhou, W.J. Chen, and W.G. Wang, Effects of strain and annealing processes on the distribution of Σ3 boundaries in a Ni-based superalloy, Scr. Mater. 54 (2006), pp. 2019–2022. doi: 10.1016/j.scriptamat.2006.03.014
  • H. Li, S. Xia, B.X. Zhou, W.J. Chen, and C.L. Hu, The dependence of carbide morphology on grain boundary character in the highly twinned alloy 690, J. Nucl. Mater. 399 (2010), pp. 108–113. doi: 10.1016/j.jnucmat.2010.01.008
  • G. Palumbo, K.T. Aust, and E.M. Lehockey, On a more restrictive geometric criterion for “special” CSL grain boundaries, Scr. Mater. 38 (1998), pp. 1685–1690. doi: 10.1016/S1359-6462(98)00077-3
  • S. Xia, B.X. Zhou, and W.J. Chen, Effect of single-step strain and annealing on grain boundary character distribution and intergranular corrosion in alloy 690, J. Mater. Sci. 43 (2008), pp. 2990–3000. doi: 10.1007/s10853-007-2164-y
  • S. Xia, H. Li, T.G. Liu, and B.X. Zhou, Appling grain boundary engineering to alloy 690 tube for enhancing intergranular corrosion resistance, J. Nucl. Mater. 416 (2011), pp. 303–310. doi: 10.1016/j.jnucmat.2011.06.017
  • H. Li, J.R. Ma, X.R. Liu, S. Xia, W.Q. Liu, and B.X. Zhou, Morphology evolution of grain boundary carbides in highly twinned Inconel alloy 600, Mater. Sci. Forum. 879 (2016), pp. 1111–1116. doi: 10.4028/www.scientific.net/MSF.879.1111
  • H. Li, Twinning structure of M23C6 carbide precipitated at twin related grain boundaries in alloy 600, Phil. Mag. 96 (2016), pp. 551–559. doi: 10.1080/14786435.2016.1143127
  • M. Tomozawa, Y. Miyahara, and K. Kako, Solute segregation on Σ3 and random grain boundaries in type 316L stainless steel, Mater. Sci. Eng. A 578 (2013), pp. 167–173. doi: 10.1016/j.msea.2013.04.048
  • S. Baik, M.J. Olszta, S.M. Bruemmer, and D.N. Seidman, Grain-boundary structure and segregation behavior in a nickel-base stainless alloy, Scr. Mater. 66 (2012), pp. 809–812. doi: 10.1016/j.scriptamat.2012.02.014
  • T.G. Liu, S. Xia, Q. Bai, B.X. Zhou, L.F. Zhang, Y.H. Lu, and T. Shoji, Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water, J. Nucl. Mater. 498 (2018), pp. 290–299. doi: 10.1016/j.jnucmat.2017.10.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.