334
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Calculation of the stability and mechanical and phonon properties of NbRuB, TaRuB, and NbOsB compounds

, ORCID Icon &
Pages 328-346 | Received 13 Dec 2017, Accepted 09 Oct 2018, Published online: 29 Oct 2018

References

  • X. Chong, Y. Jiang, R. Zhou, and J. Feng, Stability, chemical bonding behavior, elastic properties and lattice thermal conductivity of molybdenum and tungsten borides under hydrostatic pressure, Ceram. Int. 42 (2016), pp. 2117–2132. doi: 10.1016/j.ceramint.2015.09.105
  • S. Carenco, D. Portehault, C. Boissiere, N. Mezailles, and C. Sanchez, Nanoscaled metal borides and phosphides: recent developments and perspectives, Chem. Rev. 113 (2013), pp. 7981–8065. doi: 10.1021/cr400020d
  • R. Lortz, Y. Wang, S. Abe, C. Meingast, Y.B. Paderno, V. Filippov, and A. Junod, Specific heat, magnetic susceptibility, resistivity and thermal expansion of the superconductor ZrB12, Phys. Rev. B 72 (2005), p. 024547. doi: 10.1103/PhysRevB.72.024547
  • Q. Zheng, R. Gumeniuk, H. Rosner, W. Schnelle, Y. Prots, U. Burkhardt, Y. Grin and A. Leithe-Jasper, Synthesis, crystal structure and properties of the new superconductors TaRuB and NbOsB, J. Phys.: Condens. Matter 27 (2015), p. 415701.
  • W. Xie, H. Luo, K. Baroudi, J.W. Krizan, B.F. Phelan, and R.J. Cava, Fragment-based design of NbRuB as a new metal-rich boride superconductor, Chem. Mater. 27 (2015), pp. 1149–1152. doi: 10.1021/cm504449s
  • M. Mbarki, R.St. Touzani, B.P.T. Fokwa, Experimental and theoretical investigations of the ternary boride NbRuB with a layerlike structure type, Eur. J. Inorg. Chem. 2014 (2014), pp. 1381–1388. doi: 10.1002/ejic.201301488
  • W. Tian and H. Chen, Insight into the mechanical, thermodynamics and superconductor properties of NbRuB via first-principles calculation, Sci. Rep. 6 (2016), p. 19055. doi: 10.1038/srep19055
  • F. Parvin and S.H. Naqib, Elastic, thermodynamic, electronic, and optical properties of recently discovered superconducting transition metal boride NbRuB: An ab-initio investigation, Chin. Phys. B 26 (2017), p. 106201. doi: 10.1088/1674-1056/26/10/106201
  • M. Mbarki, R.St. Touzani, C.W.G. Rehorn, F.C. Gladisch, and B.P.T. Fokwa, New ternary tantalum borides containing boron dumbbells: Experimental and theoretical studies of Ta2OsB2 and TaRuB, J. Solid State Chem. 242 (2016), pp. 28–33. doi: 10.1016/j.jssc.2016.01.012
  • G. Kresse and J. Furthmuller, Efficiency of ab initio total energy calculation for metals and semiconductors using plane wave basis set, Comput. Mater. Sci. 6 (1996), pp. 15–50. doi: 10.1016/0927-0256(96)00008-0
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. 50 (1994), p. 17953. doi: 10.1103/PhysRevB.50.17953
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), p. 11169. doi: 10.1103/PhysRevB.54.11169
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), p. 3865. doi: 10.1103/PhysRevLett.77.3865
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. 13 (1976), p. 5188. doi: 10.1103/PhysRevB.13.5188
  • Y.L. Page and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B 65 (2002), p. 104104. doi: 10.1103/PhysRevB.65.104104
  • A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78 (2008), p. 134106. doi: 10.1103/PhysRevB.78.134106
  • N. Turkdal, E. Deligoz, H. Ozisik, and H.B. Ozisik, First-principles studies of the structural, elastic, and lattice dynamical properties of ZrMo2 and HfMo2, Phase Transitions 90 (2017), pp. 598–609. doi: 10.1080/01411594.2016.1252979
  • M. Born, On the stability of crystal lattices. I, Math. Proc. Cambridge Philos. Soc. 36 (1940), pp. 160–172. doi: 10.1017/S0305004100017138
  • D.V. Korabelnikov and Y.N. Zhuravlev, Ab initio investigations of the elastic properties of chlorates and perchlorates, Phys. Solid State 58 (2016), pp. 1166–1171. doi: 10.1134/S1063783416060251
  • W. Voigt, Lehrbuch der Kristallphysik, Teubner Verlag, Leipzig, 1928.
  • A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. Angew. Math. Mech. 9 (1929), pp. 49–58. doi: 10.1002/zamm.19290090104
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond. A 65 (1952), pp. 349–354. doi: 10.1088/0370-1298/65/5/307
  • Z.-J. Wu, E.-J. Zhao, H.-P. Xiang, X.-F. Hao, X.-J. Liu and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76 (2007), p. 054115. doi: 10.1103/PhysRevB.76.054115
  • E. Ateser, H. Ozisik, K. Colakoglu, and E. Deligoz, The structural and mechanical properties of CdN compound: A first principles study, Comput. Mater. Sci., 50 (2011), pp. 3208–3212. doi: 10.1016/j.commatsci.2011.06.002
  • Z.L. Lv, H.L. Cui, H. Wang, X-H. Li and G-F. Ji, Electronic, elastic, lattice dynamic and thermal conductivity properties of Na3OBr via first principles, Phys. Status Solidi B 254 (2017), p. 1700089. doi: 10.1002/pssb.201700089
  • I.R. Shein and A.L. Ivanovskii, Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations, J. Phys.: Condens. Matter 20 (2008), p. 415218.
  • V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3, Phys. Status Solidi (RRL) – Rapid Res. Lett. 1 (2007), pp. 89–91. doi: 10.1002/pssr.200600116
  • M. Mattesini, M. Magnuson, F. Tasnadi, C. Hoglund, I. A. Abrikosov, and L. Hultman, Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites: A first-principles study, Phys. Rev. B 79 (2009), p. 125122. doi: 10.1103/PhysRevB.79.125122
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954), pp. 823–843. doi: 10.1080/14786440808520496
  • Z. Souadia, A. Bouhemadou, R. Khenata, Y. Al-Douri, Structural, elastic and lattice dynamical properties of the alkali metal tellurides: First-principles study, Phys. B 521 (2017), pp. 204–214 doi: 10.1016/j.physb.2017.07.004
  • I.N. Frantsevich, F.F. Voronov, and S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators: Handbook, Naukova Dumka, Kiev, 1982.
  • J.Y. Wang, Y.C. Zhou and Z.J. Lin, Mechanical properties and atomistic deformation mechanism of γ-Y2Si2O7 from first-principles investigations, Acta Mater. 55 (2007), pp. 6019–6026. doi: 10.1016/j.actamat.2007.07.010
  • A.J. Hong, J.J. Gong, L. Li, Z.B. Yan, Z.F. Ren, and J.M. Liu, Predicting high thermoelectric performance of ABX ternary compounds NaMgX (X = P, Sb, As) with weak electron–phonon coupling and strong bonding anharmonicity, J. Mater. Chem. C 4 (2016), pp. 3281–3289. doi: 10.1039/C6TC00461J
  • I. Johnston, G. Keeler, R. Rollins, and S. Spicklemire, Solid State Physics Simulations: The Consortium for Upper-Level Physics Software, John Wiley, New York, 1996.
  • O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24 (1963), pp. 909–917. doi: 10.1016/0022-3697(63)90067-2
  • E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and Their Measurements, McGraw-Hill, New York, 1973.
  • H. Han, Density-functional theory study of the effect of pressure on the elastic properties of CaB6, Chin. Phys. B 22 (2013), p. 077101. doi: 10.1088/1674-1056/22/7/077101
  • X.-Q. Chen, H. Niu, D. Li, and Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19 (2011), pp. 1275–1281. doi: 10.1016/j.intermet.2011.03.026
  • N. Miao, B. Sa, J. Zhou, and Z. Sun, Theoretical investigation on the transition metal borides with Ta3B4-type structure: a class of hard and refractory materials, Comput. Mater. Sci. 50 (2011), pp. 1559–1566. doi: 10.1016/j.commatsci.2010.12.015
  • U.F. Ozyar, E. Deligoz, and K. Colakoglu, Systematic study on the anisotropic elastic properties of tetragonal XYSb (X = Ti, Zr, Hf; Y = Si, Ge) compounds, Solid State Sci. 40 (2016), pp. 92–100. doi: 10.1016/j.solidstatesciences.2015.01.001
  • S.I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (2008), p. 055504. doi: 10.1103/PhysRevLett.101.055504
  • C. Kaderoglu, G. Surucu, A. Erkisi, The investigation of electronic, elastic and vibrational properties of an interlanthanide perovskite: PrYbO3, J. Electron. Mater. 46 (2017), pp. 5827–5836. doi: 10.1007/s11664-017-5600-z
  • A. Marmier, Z.A.D. Lethbridge, R.I. Walton, C.W. Smith, S.C. Parker and K.E. Evans, Elam: A computer program for the analysis and representation of anisotropic elastic properties, Comput. Phys. Commun. 181 (2010), pp. 2102–2115. doi: 10.1016/j.cpc.2010.08.033
  • D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Technol. 163-164 (2003), pp. 67–74. doi: 10.1016/S0257-8972(02)00593-5
  • D.R. Clarke and C.G. Levi, Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res. 33 (2003), pp. 383–417. doi: 10.1146/annurev.matsci.33.011403.113718
  • D.G. Cahill, S.K. Watson, and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46 (1992), pp. 6131–6140. doi: 10.1103/PhysRevB.46.6131
  • J.P. Long, C.Z. Shu, L.J. Yang, and M. Yang, Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation, J. Alloy. Compd. 644 (2015), pp. 638–644. doi: 10.1016/j.jallcom.2015.04.229
  • H. Chen and W. Tian, First-principles investigation of the physical properties of cubic and orthorhombic phase Na3UO4, Phys. B 524 (2017), pp. 144–148. doi: 10.1016/j.physb.2017.08.052
  • Y. Zhou, H. Xiang, X. Lu, Z. Feng, Z. Li, Theoretical prediction on mechanical and thermal properties of a promising thermal barrier material: Y4Al2O9, J. Adv. Ceram. 4 (2015), pp. 83–93. doi: 10.1007/s40145-015-0140-6
  • Y.H. Duan, Y. Sun, and L. Lu, Thermodynamic properties and thermal conductivities of TiAl3-type intermetallics in Al–Pt–Ti system, Comput. Mater. Sci. 68 (2013), pp. 229–233. doi: 10.1016/j.commatsci.2012.11.012
  • E. Haque and M.A. Hossain, Origin of ultra-low lattice thermal conductivity in Cs2BiAgX6 (X = Cl, Br) and its impact on thermoelectric performance, J. Alloy. Compd. 748 (2018), pp. 63–72. doi: 10.1016/j.jallcom.2018.03.137
  • D. Jiang, Y. Ye, H. Liu, Q. Gou, D. Wu, Y. Wen, and L. Liu, First-principles calculations of electronic, acoustic and anharmonic properties of Mn2RuZ (Z = Si and Ge) Heusler compounds, J. Magn. Magn. Mater. 458 (2018), pp. 268–276. doi: 10.1016/j.jmmm.2018.03.037
  • P. Vaqueiro, R.A.R. Al Orabi, S.D.N. Luu, G. Guélou, A.V. Powell, R.I. Smith, J.-P. Song, D. Wee and M. Fornari, The role of copper in the thermal conductivity of thermoelectric oxychalcogenides: do lone pairs matter? Phys. Chem. Chem. Phys.17 (2015), pp. 31735–31740. doi: 10.1039/C5CP06192J
  • V.K. Gudelli, V. Kanchana, G. Vaitheeswaran, D.J. Singh, A. Svane, and N.E. Christensen, Electronic structure, transport, and phonons of SrAgChF (Ch = S, Se, Te): Bulk superlattice thermoelectrics, Phys. Rev. B 92 (2015), p. 045206. doi: 10.1103/PhysRevB.92.045206

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.