194
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Molecular dynamics simulation of the oscillatory behaviour and vibrational analysis of an adamantane molecule encapsulated in a single-walled carbon nanotube

, , , , , & show all
Pages 401-418 | Received 28 Jun 2018, Accepted 19 Sep 2018, Published online: 29 Oct 2018

References

  • W.H. Bragg, and W.L. Bragg, The structure of the diamond, Proc. Royal Soc. A 89 (1913), pp. 277–291. doi: 10.1098/rspa.1913.0084
  • J.E. Dahl, S.G. Liu, and R.M.K. Carlson, Isolation and structure of higher diamondoids, nanometer-sized diamond molecules, Science 299 (2003), pp. 96–99. doi: 10.1126/science.1078239
  • A.P. Marchand, Diamondoid hydrocarbons-delving into nature’s bounty, Science 299 (2003), pp. 52–53. doi: 10.1126/science.1079630
  • Z.D. Wang, S.A. Stout, and M. Fingas, Forensic fingerprinting of biomarkers for oil spill characterization and source identification, Environ. Forensics 7 (2006), pp. 105–146. doi: 10.1080/15275920600667104
  • S. Basu, W.P. Kang, J.L. Davidson, B.K. Choi, A.B. Bonds, and D.E. Cliffel, Electrochemical sensing using nanodiamond microprobe, Diam Relat Mater. 15 (2006), pp. 269–274. doi: 10.1016/j.diamond.2005.08.065
  • N.D. Drummond, A.J. Williamson, R.J. Needs, and G. Galli, Electron emission from diamondoids: a diffusion quantum Monte Carlo study, Phys. Rev. Lett. 95 (2005), p. 096801 (1-4). doi: 10.1103/PhysRevLett.95.096801
  • W.L. Yang, J.D. Fabbri, T.M. Willey, J.R.I. Lee, J.E. Dahl, R.M.K. Carlson, P.R. Schreiner, A.A. Fokin, B.A. Tkachenko, N.A. Fokina, W. Meevasana, N. Mannella, K. Tanaka, X.J. Zhou, T.V. Buuren, M.A. Kelly, Z. Hussain, N.A. Melosh, and Z.X. Shen, Monochromatic electron photoemission from diamondoid monolayers, Science 316 (2007), pp. 1460–1462. doi: 10.1126/science.1141811
  • J.R. Schnell, and J.J. Chou, Structure and mechanism of the M2 proton channel of influenza a virus, Nature 451 (2008), pp. 591–595. doi: 10.1038/nature06531
  • B. Reisberg, R. Doody, A. Stöffler, F. Schmitt, S. Ferris, and H.J. Möbius, Memantine in moderate-to-severe Alzheimer’s disease, N. Engl. J. Med. 348 (2003), pp. 1333–1341. doi: 10.1056/NEJMoa013128
  • X.H. Jing, C.L. Ma, Y. Ohigashi, F.A. Oliveira, T.S. Jardetzky, L.H. Pinto, and R.A. Lamb, Functional studies indicate amantadine binds to the pore of the influenza A virus M2 proton-selective ion channel, P. Nati. Acad. Sci. 105 (2008), pp. 10967–10972. doi: 10.1073/pnas.0804958105
  • H. Schwertfeger, A.A. Fokin, and P.R. Schreiner, Diamonds are a chemist’s best friend: diamondoid chemistry beyond adamantane, Angew. Chem. Int. Ed. 47 (2008), pp. 1022–1036. doi: 10.1002/anie.200701684
  • P.V.R. Schleyer, A simple preparation of adamantane, J. Am. Chem. Soc. 79 (1957), p. 3292. doi: 10.1021/ja01569a086
  • M.O. Luke and J.G. Atkinson, Preparation of adamantane-d16, Tetrahedron Lett. 2 (1971), pp. 117–120. doi: 10.1016/S0040-4039(01)96374-9
  • C.E. Nordman, and D.L. Schmitkons, Phase transition and crystal structures of adamantane, Acta Cryst. 18 (1965), pp. 764–767. doi: 10.1107/S0365110X65001755
  • T. Ito, Pressure-induced phase transition in adamantane, Acta Cryst. B29 (1973), pp. 364–365. doi: 10.1107/S0567740873002517
  • B.W. Smith, M. Monthioux, and D.E. Luzzi, Encapsulated C60 in carbon nanotubes, Nature 396 (1998), pp. 323–324. doi: 10.1038/24521
  • R. Scipioni, A. Oshiyama, and T. Ohno, Increased stability of C60 encapsulated in double walled carbon nanotubes, Chem. Phys. Lett. 455 (2008), pp. 88–92. doi: 10.1016/j.cplett.2008.02.059
  • A.A. Taherpour, D. Narian, and A. Taherpour, Structural relationships and theoretical study of the free energies of electron transfer, electrochemical properties, and electron transfer kinetic of cephalosporin antibiotics derivatives with fullerenes in nanostructure of [R]·Cn(R = cefadroxil, cefepime, cephalexin, cefotaxime, cefoperazone and ceftriaxone) supramolecular complexes, J Nanostruct. Chem. 5 (2015), pp. 153–167. doi: 10.1007/s40097-014-0146-6
  • J. Steinmetz, S. Kwon, K.J. Lee, E. Abou-Hamad, R. Almairac, C. Goze-Bac, H. Kim, and Y.W. Park, Polymerization of conducting polymers inside carbon nanotubes, Chem. Phys. Lett. 431 (2006), pp. 139–144. doi: 10.1016/j.cplett.2006.09.070
  • T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, and Y. Iwasa, Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes, Nat. Mater. 2 (2003), pp. 683–688. doi: 10.1038/nmat976
  • Y. Fujita, S. Bandow, and S. Iijima, Formation of small-diameter carbon nanotubes from PTCDA arranged inside the single-wall carbon nanotubes, Chem. Phys. Lett. 413 (2005), pp. 410–414. doi: 10.1016/j.cplett.2005.08.033
  • O.E.D. Rodrigues, G.D. Saraiva, R.O. Nascimento, E.B. Barros, J.M. Filho, Y.A. Kim, H. Muramatsu, M. Endo, M. Terrones, M.S. Dresselhaus, and A.G.S. Filho, Synthesis and characterization of selenium-carbon nanotubes, Nano Lett. 8 (2008), pp. 3651–3655. doi: 10.1021/nl801635b
  • R. Kitaura, N. Imazu, K. Kobayashi, and H. Shinohara, Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction, Nano Lett. 8 (2008), pp. 693–699. doi: 10.1021/nl073070d
  • G.C. Mcintosh, M. Yoon, S. Berber, and D. Tománek, Diamond fragments as building blocks of functional nanostructures, Phys. Rev. B 70 (2004), p. 045401. doi: 10.1103/PhysRevB.70.045401
  • S.B. Legoas, R.P.B.D. SantoS, K.S. Troche, V.R. Coluci, and D.S. Galvão, Ordered phases of encapsulated diamondoids into carbon nanotubes, Nanotechnology 22 (2011), p. 315708. doi: 10.1088/0957-4484/22/31/315708
  • M.G. Yao, P. Stenmark, E. Abou-Hamad, F. Nitze, J. Qin, C. Goze-Bac, and T. Wågberg, Confined adamantane molecules assembled to one dimension in carbon nanotubes, Carbon. N. Y. 49 (2011), pp. 1159–1166. doi: 10.1016/j.carbon.2010.11.031
  • J.Y. Zhang, Y.Q. Feng, H. Ishiwata, Y. Miyata, R. Kitaura, J.E.P. Dahl, R.M.K. Carlson, H. Shinohara, and D. Tomanek, Synthesis and transformation of linear adamantane assemblies inside carbon nanotubes, AcsNano 6 (2012), pp. 8674–8683.
  • A.A. Tonkikh, D.V. Rybkovskiy, A.S. Orekhov, A.I. Chernov, A.A. Khomich, C.P. Ewels, E.I. Kauppinen, S. B. Rochal, A. L. Chuvilin, and E. D. Obraztsova, Optical properties and charge transfer effects in single-walled carbon nanotubes filled with functionalized adamantane molecules, Carbon. N. Y. 109 (2016), pp. 87–97. doi: 10.1016/j.carbon.2016.07.053
  • K.S. Troche, V.R. Coluci, S.F. Braga, D.D. Chinellato, F. Sato, S.B. Legoas, R. Rurali, and D.S. Galvao, Prediction of ordered phases of encapsulated C60, C70, and C78 inside carbon nanotubes, Nano Lett. 5 (2005), pp. 349-355. doi: 10.1021/nl047930r
  • Z.X. Zhang, Z.Y. Pan, Q. Wei, Z.J. Li, L.K. Zang, and Y.X. Wang, Mechanics of nanotubes filled with C60, C36, and C20, Int. J. Mod. Phys. B 26 (2003), pp. 4667–4674. doi: 10.1142/S021797920302301X
  • L. Zhou, Z.Y. Pan, Y.X. Wang, J. Zhu, T.J. Liu, and M. Jiang, Stable configurations of C20 and C28 encapsulated in single wall carbon nanotubes, Nanotechnology 17 (2006), pp. 1891–1894. doi: 10.1088/0957-4484/17/8/014
  • D. Qian, W.K. Liu, and R.S. Ruoff, Mechanics of C60 in nanotubes, J. Phys. Chem. B 105 (2001), pp. 10753–10758. doi: 10.1021/jp0120108
  • J.W. Kang, and H.J. Hwang, Comparison of C60 encapsulations into carbon and boron nitride nanotubes, J. Phys.: Condens. Matter 16 (2004), pp. 3901–3908.
  • A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, and W.M. Skiff, UFF, a full periodic table force filed for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (1992), pp. 10024–10035. doi: 10.1021/ja00051a040
  • N. Morel-desrosiers, and J.P. Morel, Standard molar enthalpies, volumes, and heat capacities of adamantane in cyclohexane, n-hexane, and carbon tetrachloride, interpretation using the scaled-particle theory, J Solut. Chem. 8 (1979), pp. 579–592. doi: 10.1007/BF00715998
  • R. Ansari, and S. Ajori, Molecular dynamics investigation into the oscillatory behaviour of double-walled boron-nitride nanotubes, Superlattices Microstruct. 93 (2016), pp. 18–26. doi: 10.1016/j.spmi.2016.02.049
  • R. Ansari, and S. Ajori, and F. Sadeghi, Molecular dynamics investigation into the electric charge effect on the operation of ion-based carbon nanotube oscillators, J. Phys. Chem. Solids 85 (2015), pp. 264–272. doi: 10.1016/j.jpcs.2015.05.023
  • R. Ansari, F. Sadeghi, and S. Ajori, Continuum and molecular dynamics study of C60 fullerene-carbon nanotube oscillators, Mech. Res. Commun. 47 (2013), pp. 18–23. doi: 10.1016/j.mechrescom.2012.11.002
  • S. Ajori, R. Ansari, and F. Sadeghi, Molecular dynamics study of gigahertz nanomechanical oscillators based on an ion inside a series of electrically charged carbon nanotubes, Eur. J. Mech./A Solids 69 (2018), pp. 45–54. doi: 10.1016/j.euromechsol.2017.12.001
  • D. Christofilos, J. Arvanitidis, C. Tzampazis, K. Papagelis, T. Takenobu, Y. Iwasa, H. Kataura, C. Lioutas, S. Ves, and G.A. Kourouklis, Raman study of metallic carbon nanotubes at elevated pressure, Diam. Relat. Mater. 15 (2006), pp. 1075–1079. doi: 10.1016/j.diamond.2005.11.027
  • S. Lebedkin, K. Arnold, O. Kiowski, F. Hennrich, and M.M. Kappes, Raman study of individually dispersed single-walled carbon nanotubes under pressure, Phys. Rev. B 73 (2006), p. 094109. doi: 10.1103/PhysRevB.73.094109
  • K. Gao, R.C. Dai, Z. Zhao, Z.M. Zhang, and Z.J. Ding, Effects of pressure transmitting media on Raman features of single-walled carbon nanotubes, Solid State Commun. 147 (2008), pp. 65–68. doi: 10.1016/j.ssc.2008.04.013
  • D. Sanchez-Portal, E. Artacho, and J.M. Soler, Ab initio structural, elastic, and vibrational properties of carbon nanotubes, Phys, Rev. B 59 (1998), pp. 12678–12688. doi: 10.1103/PhysRevB.59.12678
  • Q. Chen, Z. Wang, Y. Zheng, W. Shi, D.D. Wang, Y.C. Luo, B. Zhang, J.M. Lu, H.J. Zhang, J. Pan, C. Y. Mou, Z. Tang, and P. Sheng, New developments in the growth of 4 angstrom carbon nanotubes in linear channels of zeolite template, Carbon. N. Y. 74 (2014), pp. 401–409. doi: 10.1016/j.carbon.2014.04.094
  • J.O. Jensen, Vibrational frequencies and structural determination of adamantane, Spectrochim. Acta A. 60 (2004), pp. 1895–1905. doi: 10.1016/j.saa.2003.09.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.