398
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Mass and thermal transport in liquid Cu-Ag alloys

ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 468-491 | Received 03 Jun 2018, Accepted 06 Nov 2018, Published online: 27 Nov 2018

References

  • T. Asano, Y. Sakai, M. Oshikiri, K. Inoue, H. Maeda, G. Heremans, L. Van Bockstal, L. Li, and F. Herlach, Cu-Ag wire pulsed magnets with and without internal reinforcements, IEEE Trans. Mag. 30 (1994), pp. 2106–2109. doi: 10.1109/20.305685
  • S.L. Taylor, An investigation of the mechanical and physical properties of copper-silver alloys and the use of these alloys in Pre-Columbian America, B.Sc. diss., Massachusetts Institute of Technology, 2013.
  • J. Freudenberger, W. Grünberger, E. Botcharova, A. Gaganov, and L. Schultz, Mechanical properties of Cu-based micro- and macrocomposites, Adv. Eng. Mater. 4 (2002), pp. 677–681. doi: 10.1002/1527-2648(20020916)4:9<677::AID-ADEM677>3.0.CO;2-I
  • Y. Sakai, K. Inoue, T. Asano, H. Wada, and H. Maeda, Development of high-strength, high-conductivity Cu–Ag alloys for high-field pulsed magnet use, Appl. Phys. Lett. 59 (1991), pp. 2965–2967. doi: 10.1063/1.105813
  • Y.-T. Ning, X.-H. Zhang, and Y.-J. Wu, Electrical conductivity of Cu-Ag in situ filamentary composites, Trans. Nonferr. Metal Soc. China 17 (2007), pp. 378–383. doi: 10.1016/S1003-6326(07)60102-2
  • M. Engelhardt, Messung von diffusionskoeffizienten in ternären AlCuAg legierungen und deren subsystemen, Ph.D. diss., RWTH Aachen University, 2014.
  • U. Sarder, A. V. Evteev, E. V. Levchenkoet al., Molecular dynamics study of mass transport properties of liquid Cu-Ag alloys, in Mass Transport in Advanced Engineering Materials, Volume 9, Öchsner A., Murch G.E., Belova I.V., eds., Diffusion Foundations-TTP, Zürich, 2016. pp. 58–72.
  • I.V. Belova, T. Ahmed, U. Sarder, A.V. Evteev, E.V. Levchenko, and G.E. Murch, The manning factor for direct exchange and ring diffusion mechanisms, Philos. Mag. 97 (2017), pp. 230–247. doi: 10.1080/14786435.2016.1255368
  • R. Howard and A. Lidiard, Matter transport in solids, Rep. Prog. Phys. 27 (1964), pp. 161–240. doi: 10.1088/0034-4885/27/1/305
  • S.R. de Groot and P. Mazur, Non-equilibrium Thermodynamics. North-Holland, Amsterdam, 1962.
  • A.V. Evteev, E.V. Levchenko, I.V. Belova, R. Kozubski, Z.-K. Liu, and G. E. Murch, Thermotransport in binary system: case study on Ni50Al50 melt, Philos. Mag. 94 (2014), pp. 3574–3602. doi: 10.1080/14786435.2014.965236
  • A.V. Evteev, E.V. Levchenko, I.V. Belova, Theoretical study of the heat of transport in a liquid Ni50Al50 alloy: Green-Kubo approach, in Recent Progress in Diffusion Thermodynamics and Kinetics in Intermetallic Compounds, 2, Kozubski R., eds., Diffusion Foundations, Zürich, 2014. pp. 159–189.
  • E.V. Levchenko, A.V. Evteev, T. Ahmed et al., Influence of the interatomic potential on thermotransport in binary liquid alloys: case study on NiAl. Philos. Mag 96(29) (2016), pp. 3054–3074. doi: 10.1080/14786435.2016.1223893
  • T. Ahmed, E.V. Levchenko, A.V. Evteev, Molecular Dynamics Prediction of the Influence of Composition on Thermotransport in Ni-Al Melts, 12, Kozubski R., eds., Diffusion Foundations, Zürich, 2017. pp. 93–110.
  • Y. Mishin, M. Mehl, D. Papaconstantopoulos, Embedded-atom potential for B 2− NiAl. Phys. Rev. B 65 (2002), pp. 224114-1–14. doi: 10.1103/PhysRevB.65.224114
  • G.P. Purja Pun and Y. Mishin, Development of an interatomic potential for the Ni-Al system, Philos. Mag. 89 (2009), pp. 3245–3267. doi: 10.1080/14786430903258184
  • E. Sondermann, F. Kargl, and A. Meyer, Thermodiffusion in liquid Al–Ni measured by X-ray radiography, 12th international conference on diffusion in solids and liquids (DSL-2016), Split, Croatia, 2016.
  • C. Ludwig, Diffusion between unequally heated regions of initially uniform solutions, Sitzber. Akad. Wiss. Wien 20 (1856), pp. 539.
  • C. Soret, Concentration differences d'une dissolution don’t deux parties sont à des températures différentes, Arch. Sci. Phys. Nat. 2 (1879), pp. 48–61.
  • M. S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids, J. Chem. Phys. 22 (1954), pp. 398–413. doi: 10.1063/1.1740082
  • R. Kubo, Statistical-mechanical theory of irreversible processes. I. general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan 12 (1957), pp. 570–586. doi: 10.1143/JPSJ.12.570
  • G. Paolini and G. Ciccotti, Cross thermotransport in liquid mixtures by nonequilibrium molecular dynamics, Phys. Rev. A 35 (1987), pp. 5156–5166. doi: 10.1103/PhysRevA.35.5156
  • D. J. Evans and D. MacGowan, Addendum to ‘heat and matter transport in binary liquid mixtures’, Phys. Rev. A 36 (1987), pp. 948–950. doi: 10.1103/PhysRevA.36.948
  • D. MacGowan and D.J. Evans, Heat and matter transport in binary liquid mixtures, Phys. Rev. A 34 (1986), pp. 2133–2142. doi: 10.1103/PhysRevA.34.2133
  • A. Perronace, G. Ciccotti, F. Leroy, A. Fuchs, and B. Rousseau, Soret coefficient for liquid argon-krypton mixtures via equilibrium and nonequilibrium molecular dynamics: A comparison with experiments, Phys. Rev. E 66 (2002), pp. 031201–031215. doi: 10.1103/PhysRevE.66.031201
  • R. Vogelsang, C. Hoheisel, G.V. Paolini, and G. Ciccotti, Soret coefficient of isotopic Lennard-Jones mixtures and the Ar-Kr system as determined by equilibrium molecular-dynamics calculations, Phys. Rev. A 36 (1987), pp. 3964–3974. doi: 10.1103/PhysRevA.36.3964
  • M. Gillan, A simulation model for hydrogen in palladium. II. Mobility and thermotransport, J. Phys. C: Solid State Phys. 20 (1987), pp. 521–538. doi: 10.1088/0022-3719/20/4/005
  • P.K. Schelling and T. Le, Computational methodology for analysis of the Soret effect in crystals: application to hydrogen in palladium, J. Appl. Phys. 112 (2012), pp. 083516–083528. doi: 10.1063/1.4758462
  • P. Williams, Y. Mishin, and J. Hamilton, An embedded-atom potential for the Cu–Ag system, Modell. Simul. Mater. Sci. Eng. 14 (2006), pp. 817–833. doi: 10.1088/0965-0393/14/5/002
  • T. Ahmed, W.Y. Wang, R. Kozubskiet al., Interdiffusion and thermotransport in Ni-Al liquid alloys. Philos. Mag. 98(24) (2018), pp. 2221–2246. doi: 10.1080/14786435.2018.1479077
  • A. Allnatt and A. Lidiard, Atomic Transport in Solids, Cambridge University Press, Cambridge, 1993.
  • L. Onsager, Reciprocal relations in irreversible processes. I, Phys. Rev. 37 (1931), pp. 405–426. doi: 10.1103/PhysRev.37.405
  • L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev. 38 (1931), pp. 2265–2279. doi: 10.1103/PhysRev.38.2265
  • A.V. Evteev, E.V. Levchenko, L. Momenzadeh, Y. Sohn, I.V. Belova, and G.E. Murch, Molecular dynamics study of phonon-mediated thermal transport in a Ni50Al50 melt: case analysis of the influence of the process on the kinetics of solidification, Philo. Mag. 95 (2015), pp. 90–111. doi: 10.1080/14786435.2014.984006
  • P. Sindzingre, G. Ciccotti, C. Massobrio, and D. Frenkel, Partial enthalpies and related quantities in mixtures from computer simulation, Chem. Phys. Lett. 136 (1987), pp. 35–41. doi: 10.1016/0009-2614(87)87294-9
  • P. Sindzingre, C. Massobrio, G. Ciccotti, and D. Frenkel, Calculation of partial enthalpies of an argon-krypton mixture by NPT molecular dynamics, Chem. Phys. 129 (1989), pp. 213–224. doi: 10.1016/0301-0104(89)80007-2
  • T. Faber and J. Ziman, A theory of the electrical properties of liquid metals: III. The resistivity of binary alloys, Philos. Mag. 11 (1965), pp. 153–173. doi: 10.1080/14786436508211931
  • A. Bhatia and D. Thornton, Structural aspects of the electrical resistivity of binary alloys, Phys. Rev. B 2 (1970), p. 3004–3012. doi: 10.1103/PhysRevB.2.3004
  • X. Hui, H.Z. Fang, G.L. Chen, S.L. Shang, Y. Wang, J.Y. Qin, and Z.-K. Liu, Atomic structure of Zr41. 2Ti13. 8Cu12. 5Ni10Be22. 5 bulk metallic glass alloy, Acta Mater. 57 (2009), pp. 376–391. doi: 10.1016/j.actamat.2008.09.022
  • W.Y. Wang, H.Z. Fang, S.L. Shang, H. Zhang, Y. Wang, X. Hui, S. Mathaudhu, and Z.-K. Liu, Atomic structure and diffusivity in liquid Al80Ni20 by ab initio molecular dynamics simulations, Physica B 406 (2011), pp. 3089–3097. doi: 10.1016/j.physb.2011.05.013
  • R. Gao, X. Hui, H. Fang, X. Liu, G. Chen, and Z.-K. Liu, Structural characterization of Mg65Cu25Y10 metallic glass from ab initio molecular dynamics, Comput. Mater. Sci. 44 (2008), pp. 802–806. doi: 10.1016/j.commatsci.2008.05.031
  • Y. Zhang, L. Wang, W. Wang, and J. Zhou, Structural transition of sheared-liquid metal in quenching state, Phys. Lett. A 355 (2006), pp. 142–147. doi: 10.1016/j.physleta.2006.02.020
  • J.-F. Wax and N. Jakse, Molecular dynamics simulation study of the interdiffusion properties of liquid Na-K alloys, J. Phys. Conf. Ser. 98 (2008), pp. 042001–042004. doi: 10.1088/1742-6596/98/4/042001
  • J. Horbach, S. K. Das, A. Griesche, M.-P. Macht, G. Frohberg, and A. Meyer, Self-diffusion and interdiffusion in Al 80 Ni 20 melts: simulation and experiment, Phys. Rev. B 75 (2007), pp. 174304–174311. doi: 10.1103/PhysRevB.75.174304
  • A. Einstein, On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart, Ann. Phys. 17 (1905), pp. 549–560. doi: 10.1002/andp.19053220806
  • M. von Smoluchowski, Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen, Ann. Phys. 326 (1906), pp. 756–780. doi: 10.1002/andp.19063261405
  • J. R. Manning, Diffusion Kinetics for Atoms in Crystals, Van Nostrand, Princeton, 1968.
  • L. Verlet, Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159 (1967), pp. 98–103. doi: 10.1103/PhysRev.159.98
  • ‘Copper and Copper Alloys’ –1991 Annual book of ASTM standards, American Society for Testing and Materials, 1991.
  • P. Nash, M.F. Singleton, J.L. Murray, Al-Ni (aluminum-nickel), in Phase Diagrams of Binary Nickel Alloys, Volume 1, Nash P., eds., ASM International, Metals Park, OH, 1991. pp. 3–11.
  • A. Meyer, Self-diffusion in liquid copper as seen by quasielastic neutron scattering, Phys. Rev. B 81 (2010), pp. 012102–012104. doi: 10.1103/PhysRevB.81.012102
  • M. Engelhardt, A. Meyer, F. Yang, Self and chemical diffusion in liquid Al-Ag, in Diffusion Phenomena: Aspects of Characterization and Experiments, 367, Öchsner A., Belova I.V., Murch G.E., eds., Defect and Diffusion Forum, Zürich, 2016. pp. 157–166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.