514
Views
28
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Grain refinement and strengthening of austenitic stainless steels during large strain cold rolling

, ORCID Icon &
Pages 531-556 | Received 17 Aug 2018, Accepted 06 Nov 2018, Published online: 15 Nov 2018

References

  • K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R Rep. 65 (2009), pp. 39–104. doi: 10.1016/j.mser.2009.03.001
  • W. Martienssen and H. Warlimont, eds., Springer Handbook of Condensed Matter and Materials Data, Springer, Heidelberg, New York, 2005.
  • J. Talonen and H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta Mater. 55 (2007), pp. 6108–6118. doi: 10.1016/j.actamat.2007.07.015
  • L. Bracke, G. Mertens, J. Penning, B.C. De Cooman, M. Liebeherr, and N. Akdut, Influence of phase transformations on the mechanical properties of high-strength austenitic Fe-Mn-Cr steel, Metall. Mater. Trans. A 37 (2006), pp. 307–317. doi: 10.1007/s11661-006-0002-5
  • R.E. Schramm and R.P. Reed, Stacking fault energies of seven commercial austenitic stainless steels, Metall. Trans. A 6 (1975), pp. 1345–1351. doi: 10.1007/BF02641927
  • G. Olson and M. Cohen, Kinetics of strain-induced martensitic nucleation, Met. Mater Trans A 6 (1975), pp. 791–795. doi: 10.1007/BF02672301
  • N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, and S. Takaki, Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels, Acta Mater. 58 (2010), pp. 895–903. doi: 10.1016/j.actamat.2009.10.004
  • Y. Nakao and H. Miura, Nano-grain evolution in austenitic stainless steel during multi-directional forging, Mater. Sci. Eng. A 528 (2011), pp. 1310–1317. doi: 10.1016/j.msea.2010.10.018
  • M. Abramova, N. Enikeev, R. Valiev, A. Etienne, B. Radiguet, Y. Ivanisenko, and X. Sauvage, Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel, Mater. Lett. 136 (2014), pp. 349–352. doi: 10.1016/j.matlet.2014.07.188
  • I. Shakhova, A. Belyakov, Z. Yanushkevich, K. Tsuzaki, and R. Kaibyshev, On strengthening of austenitic stainless steel by large strain cold working, ISIJ Int. 56 (2016), pp. 1289–1296. doi: 10.2355/isijinternational.ISIJINT-2016-095
  • S.V. Dobatkin, O.V. Rybalchenko, N.A. Enikeev, A.A. Tokar, and M.M. Abramova, Formation of fully austenitic ultrafine-grained high strength state in metastable Cr–Ni–Ti stainless steel by severe plastic deformation, Mater. Lett. 166 (2016), pp. 276–279. doi: 10.1016/j.matlet.2015.12.094
  • M. Odnobokova, M. Tikhonova, A. Belyakov, and R. Kaibyshev, Development of Σ3 n CSL boundaries in austenitic stainless steels subjected to large strain deformation and annealing, J. Mater. Sci. 52 (2017), pp. 4210–4223. doi: 10.1007/s10853-016-0675-0
  • A. Belyakov, A. Kipelova, M. Odnobokova, I. Shakhova, and R. Kaibyshev, Development of ultrafine grained austenitic stainless steels by large strain deformation and annealing, Mater. Sci. Forum 783–786 (2014), pp. 651–656. doi: 10.4028/www.scientific.net/MSF.783-786.651
  • A. Belyakov, M. Odnobokova, I. Shakhova, and R. Kaibyshev, Regularities of microstructure evolution and strengthening mechanisms of austenitic stainless steels subjected to large strain cold working, Mater. Sci. Forum 879 (2016), pp. 224–229. doi: 10.4028/www.scientific.net/MSF.879.224
  • M. Odnobokova, A. Belyakov, A. Kipelova, and R. Kaibyshev, Formation of ultrafine-grained structures in 304L and 316L stainless steels by recrystallization and reverse phase transformation, Mater. Sci. Forum 838–839 (2016), pp. 410–415. doi: 10.4028/www.scientific.net/MSF.838-839.410
  • A.A. Tiamiyu, M. Eskandari, M. Sanayei, A.G. Odeshi, and J.A. Szpunar, Mechanical behavior and high-resolution EBSD investigation of the microstructural evolution in AISI 321 stainless steel under dynamic loading condition, Mater. Sci. Eng. A 673 (2016), pp. 400–416. doi: 10.1016/j.msea.2016.07.095
  • R.E. Smallman and D. Green, The dependence of rolling texture on stacking fault energy, Acta Metall. 12 (1964), pp. 145–154. doi: 10.1016/0001-6160(64)90182-8
  • S.G. Chowdhury, S. Das, and P.K. De, Cold rolling behaviour and textural evolution in AISI 316L austenitic stainless steel, Acta Mater. 53 (2005), pp. 3951–3959. doi: 10.1016/j.actamat.2005.05.006
  • C. Donadille, R. Valle, P. Dervin, and R. Penelle, Development of texture and microstructure during cold-rolling and annealing of FCC alloys: example of an austenitic stainless steel, Acta Metall. 37 (1989), pp. 1547–1571. doi: 10.1016/0001-6160(89)90123-5
  • M. Nezakat, H. Akhiani, M. Hoseini, and J. Szpunar, Effect of thermo-mechanical processing on texture evolution in austenitic stainless steel 316L, Mater. Charact. 98 (2014), pp. 10–17. doi: 10.1016/j.matchar.2014.10.006
  • C. Haase, S.G. Chowdhury, L.A. Barrales-Mora, D.A. Molodov, and G. Gottstein, On the relation of microstructure and texture evolution in an austenitic Fe-28Mn-0.28C TWIP steel during cold rolling, Metall. Mater. Trans. A 44 (2013), pp. 911–922. doi: 10.1007/s11661-012-1543-4
  • N.K. Tewary, S.K. Ghosh, S. Bera, D. Chakrabarti, and S. Chatterjee, Influence of cold rolling on microstructure, texture and mechanical properties of low carbon high Mn TWIP steel, Mater. Sci. Eng. A 615 (2014), pp. 405–415. doi: 10.1016/j.msea.2014.07.088
  • A.A. Saleh, C. Haase, E.V. Pereloma, D.A. Molodov, and A.A. Gazder, On the evolution and modelling of brass-type texture in cold-rolled twinning-induced plasticity steel, Acta Mater. 70 (2014), pp. 259–271. doi: 10.1016/j.actamat.2014.02.033
  • Z. Yanushkevich, A. Belyakov, C. Haase, D.A. Molodov, and R. Kaibyshev, Structural/textural changes and strengthening of an advanced high-Mn steel subjected to cold rolling, Mater. Sci. Eng. A 651 (2016), pp. 763–773. doi: 10.1016/j.msea.2015.11.027
  • D.B. Williams and C.B. Carter, Transmission Electron Microscopy Plenum, Springer, New York, 1996.
  • M. Eskandari, A. Kermanpur, and A. Najafizadeh, Formation of nanocrystalline structure in 301 stainless steel produced by martensite treatment, Metall. Mater. Trans. A 40 (2009), pp. 2241–2249. doi: 10.1007/s11661-009-9916-z
  • M. Odnobokova, A. Belyakov, and R. Kaibyshev, Development of nanocrystalline 304L stainless steel by large strain cold working, Metals. (Basel) 5 (2015), pp. 656–668. doi: 10.3390/met5020656
  • Y. He, S. Godet, and J.J. Jonas, Observations of the gibeon meteorite and the inverse greninger–troiano orientation relationship, J. Appl. Crystallogr. 39 (2006), pp. 72–81. doi: 10.1107/S0021889805038276
  • D. Kuhlmann-Wilsdorf and N. Hansen, Geometrically necessary, incidental and subgrain boundaries, Scr. Metall. Mater. 25 (1991), pp. 1557–1562. doi: 10.1016/0956-716X(91)90451-6
  • B. Straumal, A. Korneva, and P. Zięba, Phase transitions in metallic alloys driven by the high pressure torsion, Arch. Civ. Mech. Eng. 14 (2014), pp. 242–249. doi: 10.1016/j.acme.2013.07.002
  • R.D.K. Misra, B.R. Kumar, M. Somani, and P. Karjalainen, Deformation processes during tensile straining of ultrafine/nanograined structures formed by reversion in metastable austenitic steels, Scr. Mater. 59 (2008), pp. 79–82. doi: 10.1016/j.scriptamat.2008.02.028
  • M. Odnobokova, A. Belyakov, and R. Kaibyshev, Effect of severe cold or warm deformation on microstructure evolution and tensile behavior of a 316L stainless steel, Adv. Eng. Mater. 17 (2015), pp. 1812–1820. doi: 10.1002/adem.201500100
  • W. Roberts, Microstructure evolution and flow stress during Hot working, in Strength of Metals and Alloys (ICSMA-7), H.J. McQueen, J.-P. Bailon, J.I. Dickson, J.J. Jonas, M.G. Akben, eds., Pergamon Press, Oxford, UK, 1986, pp. 1859–1892.
  • J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The avrami kinetics of dynamic recrystallization, Acta Mater. 57 (2009), pp. 2748–2756. doi: 10.1016/j.actamat.2009.02.033
  • A. Belyakov, M. Tikhonova, P. Dolzhenko, T. Sakai, and R. Kaibyshev, On kinetics of grain refinement and strengthening by dynamic recrystallization, Adv. Eng. Mater. (2018), doi:10.1002/adem.201800104, in press.
  • M. Odnobokova, A. Belyakov, N. Enikeev, D.A. Molodov, and R. Kaibyshev, Annealing behavior of a 304L stainless steel processed by large strain cold and warm rolling, Mater. Sci. Eng. A 689 (2017), pp. 370–383. doi: 10.1016/j.msea.2017.02.073
  • H.-R. Wenk and P.V. Houtte, Texture and anisotropy, Rep. Prog. Phys. 67 (2004), pp. 1367–1428. doi: 10.1088/0034-4885/67/8/R02
  • R.K. Ray, Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys, Acta Metall. Mater. 43 (1995), pp. 3861–3872. doi: 10.1016/0956-7151(95)90169-8
  • R. Madhavan, R.K. Ray, and S. Suwas, Micro-mechanical aspects of texture evolution in nickel and nickel–cobalt alloys: role of stacking fault energy, Philos. Mag. 96 (2016), pp. 3177–3199. doi: 10.1080/14786435.2016.1229061
  • V.V. Rybin, Large Plastic Deformations and Destruction of Metals, Metallurgia, Moscow, 1987.
  • B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf, Overview no. 96 evolution of f.c.c. deformation structures in polyslip, Acta Metall. Mater. 40 (1992), pp. 205–219. doi: 10.1016/0956-7151(92)90296-Q
  • F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, and C. Harris, Developing stable fine-grain microstructures by large strain deformation, Philos. Trans. Roy. Soc. Lond. A 357 (1999), pp. 1663–1681. doi: 10.1098/rsta.1999.0395
  • R.Z. Valiev, R.K. Islamgaliev, and I.V Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000), pp. 103–189. doi: 10.1016/S0079-6425(99)00007-9
  • T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014), pp. 130–207. doi: 10.1016/j.pmatsci.2013.09.002
  • A. Morozova and R. Kaibyshev, Grain refinement and strengthening of a Cu–0.1Cr–0.06Zr alloy subjected to equal channel angular pressing, Philos. Mag. 97 (2017), pp. 2053–2076. doi: 10.1080/14786435.2017.1324649
  • J. Hirsch and K. Lücke, Overview no. 76: mechanism of deformation and development of rolling textures in polycrystalline fcc metals—I. description of rolling texture development in homogeneous CuZn alloys, Acta Metall. 36 (1988), pp. 2863–2882. doi: 10.1016/0001-6160(88)90172-1
  • J. Hirsch, K. Lücke, and M. Hatherly, Overview no. 76: mechanism of deformation and development of rolling textures in polycrystalline fcc metals—III. The influence of slip inhomogeneities and twinning, Acta Metall. 36 (1988), pp. 2905–2927. doi: 10.1016/0001-6160(88)90174-5
  • A. Kumar, R.K. Khatirkar, D. Chalapathi, N. Bibhanshu, and S. Suwas, Texture development during cold rolling of Fe–Cr–Ni alloy-experiments and simulations, Philos. Mag. 97 (2017), pp. 1939–1962. doi: 10.1080/14786435.2017.1322727
  • A. Belyakov, M. Murayama, Y. Sakai, K. Tsuzaki, M. Okubo, M. Eto, and T. Kimura, Development of a high-strength high-conductivity Cu−Ni−P alloy. part II: processing by severe deformation, J. Electron. Mater. 35 (2006), pp. 2000–2008. doi: 10.1007/s11664-006-0306-7
  • B.R. Kumar and M. Ghosh, Surface and mid-plane texture evolution in austenite phase of cold rolled austenitic stainless steels, Mater. Sci. Eng. A 457 (2007), pp. 236–245. doi: 10.1016/j.msea.2006.12.031
  • Y. Lü, D.A. Molodov, and G. Gottstein, Correlation between microstructure and texture development in a cold-rolled TWIP steel, ISIJ Int. 51 (2011), pp. 812–817. doi: 10.2355/isijinternational.51.812
  • C. Haase, T. Ingendahl, O. Güvenç, M. Bambach, W. Bleck, D.A. Molodov, and L.A. Barrales-Mora, On the applicability of recovery-annealed twinning-induced plasticity steels: potential and limitations, Mater. Sci. Eng. A 649 (2016), pp. 74–84. doi: 10.1016/j.msea.2015.09.096
  • R.K. Ray, J.J. Jonas, and R.E. Hook, Cold rolling and annealing textures in low carbon and extra low carbon steels, Int. Mater. Rev. 39 (1994), pp. 129–172. doi: 10.1179/imr.1994.39.4.129
  • F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004.
  • H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, and Y. Minamino, Crystallographic analysis of plate martensite in Fe–28.5 at.% Ni by FE-SEM/EBSD, Mater. Charact. 54 (2005), pp. 378–386. doi: 10.1016/j.matchar.2004.12.015
  • H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Mater. 54 (2006), pp. 1279–1288. doi: 10.1016/j.actamat.2005.11.001
  • I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki, and R. Kaibyshev, Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel, Mater. Sci. Eng. A 545 (2012), pp. 176–186. doi: 10.1016/j.msea.2012.02.101
  • D.A. Hughes, and N. Hansen, Microstructure and strength of nickel at large strains, Acta Mater. 48 (2000), pp. 2985–3004. doi: 10.1016/S1359-6454(00)00082-3
  • M.J. Starink, Dislocation versus grain boundary strengthening in SPD processed metals: Non-causal relation between grain size and strength of deformed polycrystals, Mater. Sci. Eng. A 705 (2017), pp. 42–45. doi: 10.1016/j.msea.2017.08.069
  • Z. Yanushkevich, S.V. Dobatkin, A. Belyakov, and R. Kaibyshev, Hall-Petch relationship for austenitic stainless steels processed by large strain warm rolling, Acta Mater. 136 (2017), pp. 39–48. doi: 10.1016/j.actamat.2017.06.060
  • R.W. Armstrong, 60 years of hall-petch: past to present nano-scale connections, Mater. Trans. 55 (2014), pp. 2–12. doi: 10.2320/matertrans.MA201302
  • A. Belyakov, Y. Kimura, and K. Tsuzaki, Microstructure evolution in dual-phase stainless steel during severe deformation, Acta Mater. 54 (2006), pp. 2521–2532. doi: 10.1016/j.actamat.2006.01.035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.