249
Views
37
CrossRef citations to date
0
Altmetric
Part A: Materials Science

High-frequency absorption properties of gallium weakly doped barium hexaferrites

, , , , , , , , , , & show all
Pages 585-605 | Received 21 Sep 2016, Accepted 26 Oct 2018, Published online: 27 Nov 2018

References

  • Y.Y. Tsea, P.M. Suherman, T.J. Jackson, and I.P. Jonesa, Effect of growth defects on microwave properties in epitaxial Ba0.5Sr0.5TiO3 thin films grown on (001) MgO by pulsed laser deposition, Phil. Mag. 88 (2008), pp. 2505–2518. doi: 10.1080/14786430802375642
  • L. Wang, Y. Huang, C. Li, J. Chen, and X. Sun, A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber, Phys. Chem. Chem. Phys. 17 (2015), pp. 2228–2234. doi: 10.1039/C4CP04745A
  • S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenkoet al., Polarization origin and iron positions in indium doped barium hexaferrites, Ceram. Int. 44 (2018), pp. 290–300. doi: 10.1016/j.ceramint.2017.09.172
  • T.A. Kaplan and N. Menyuk, Spin ordering in three-dimensional crystals with strong competing exchange interactions, Phil. Mag. 87 (2007), pp. 3711–3785. doi: 10.1080/14786430601080229
  • S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Oleinik, E.S. Yakovenko, and L.Yu. Matsui, Magnetic and absorbing properties of M-type substituted hexaferrites BaFe12–xGaxO19 (0.1<x<1.2), JETP 123 (2016), pp. 461–469. doi: 10.1134/S1063776116090089
  • L. Wang, H. Yu, X. Ren, and G. Xu, Magnetic and microwave absorption properties of BaMnxCo1−xTiFe10O19, J. Alloys Compd. 588 (2014), pp. 212–216. doi: 10.1016/j.jallcom.2013.11.072
  • P. Meng, K. Xiong, L. Wang, S. Li, Y. Cheng, and G. Xu, Tunable complex permeability and enhanced microwave absorption properties of BaNixCo1−xTiFe10O19, J. Alloys Compd. 628 (2015), pp. 75–80. doi: 10.1016/j.jallcom.2014.10.163
  • V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, and A.M. Balagurov, Investigation of the crystal and magnetic structures of BaFe12-xAlxO19 solid solutions (x = 0.1–1.2), Crystallogr. Rep. 60 (2015), pp. 629–635. doi: 10.1134/S1063774515030220
  • A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, and M. Salem, Evolution of structure and physical properties in Al-substituted Ba-hexaferrites, Chin. Phys. B 25 (2016), pp. 016102–6. doi: 10.1088/1674-1056/25/1/016102
  • X. Liu, J. Wang, L.M. Gan, S.C. Ng, and J. Ding, An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion, J. Magn. Magn. Mater. 184 (1998), pp. 344–354. doi: 10.1016/S0304-8853(97)01141-4
  • D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, M. Bischoff, N.S. Perov, A.S. Semisalova, I.V. Krivtsov, L.I. Isaenko, G.G. Mikhailov, and R. Niewa, Growth, structural and magnetic characterization of Al-substituted barium hexaferrite single crystals, J. Alloys Compd. 615 (2014), pp. 1043–1046. doi: 10.1016/j.jallcom.2014.07.126
  • J.J. Went, G.W. Rathenau, E.W. Gorter, and G.W. van Oosterhout, Hexagonal iron-oxide compounds as permanent-magnet materials, Phys. Rev. 86 (1952), pp. 424–425. doi: 10.1103/PhysRev.86.424.2
  • R.C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci. 57 (2012), pp. 1191–1334. doi: 10.1016/j.pmatsci.2012.04.001
  • J.J. Went, G.W. Rathenau, E.W. Gorter, and G.W. Van Oosterhout, Hexagonal iron-oxide compounds as permanent-magnet materials, Phys. Rev. 86 (1952), pp. 424–425. doi: 10.1103/PhysRev.86.424.2
  • J. Smit and H.G. Beljers, Ferromagnetic resonance absorption in BaFe12O19, a highly anisotropic crystal, Philips Res. Rep. 10 (1955), pp. 113–130.
  • Q.A. Pankhurst, R.S. Pollard, Fine-particle magnetic oxides, J. Phys. Condens. Mater. 5 (1993), pp. 8487–8508. doi: 10.1088/0953-8984/5/45/002
  • Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura, Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity, Phys. Rev. Lett. 105 (2010), pp. 257201–4. doi: 10.1103/PhysRevLett.105.257201
  • G. Tan and X. Chen, Structure and multiferroic properties of barium hexaferrite ceramics, J. Magn. Magn. Mater. 327 (2013), pp. 87–90. doi: 10.1016/j.jmmm.2012.09.047
  • V.G. Kostishin, L.V. Panina, L.V. Kozhitov, A.V. Timofeev, A.K. Zyuzin, and A.N. Kovalev, On synthesis of BaFe12O19, SrFe12O19 and PbFe12O19 hexagonal ferrite ceramics with multiferroid properties, Tech. Phys. 60 (2015), pp. 1189–1193. doi: 10.1134/S1063784215080150
  • S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, E.A. Trofimov, P. Thakur, A. Thakur, and Y. Yang, Magnetic and dipole moments in indium doped barium hexaferrites, J. Magn. Magn. Mater. 457 (2018), pp. 83–96. doi: 10.1016/j.jmmm.2018.02.078
  • V.G. Kostishyn, L.V. Panina, L.V. Kozhitov, A.V. Timofeev, and A.N. Kovalev, Synthesis and multiferroic properties of M-type SrFe12O19 hexaferrite ceramics, J. Alloy Compd. 645 (2015), pp. 297–300. doi: 10.1016/j.jallcom.2015.05.024
  • A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishin, L.V. Panina, M.M. Salem, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskii, and D.A. Krivchenya, Multiferroic properties and structural features of M-type Al-substituted barium hexaferrites, Phys. Sol. State 59 (2017), pp. 737–745. doi: 10.1134/S1063783417040308
  • V.G. Kostishyn, L.V. Panina, А.V. Timofeev, L.V. Kozhitov, A.N. Kovalev, and A.K. Zyuzin, Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19, J. Magn. Magn. Mater. 400 (2016), pp. 327–332. doi: 10.1016/j.jmmm.2015.09.011
  • L. Li, K. Chen, H. Liu, G. Tong, H. Qian, and B. Hao, Attractive microwave-absorbing properties of M-BaFe12O19 ferrite, J. Alloys Compd. 557 (2013), pp. 11–17. doi: 10.1016/j.jallcom.2012.12.148
  • V.A. Turchenko, A.V. Trukhanov, S.V. Trukhanov, I.A. Bobrikov, and A.M. Balagurov, Features of crystal and magnetic structures of solid solutions BaFe12-xDxO19 (D = Al3+, In3+; x = 0.1) in a wide temperature range, Eur. Phys. J. Plus 131 (2016), pp. 82–10. doi: 10.1140/epjp/i2016-16082-x
  • S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, and H. Szymczak,, Frustrated exchange interactions formation at Low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85, JETP 111 (2010), pp. 209–214. doi: 10.1134/S106377611008008X
  • N. Velhal, G. Kulkarni, D. Mahadik, P. Chowdhury, H. Barshilia, and V. Puri, Effect of Ba+2 Ion on structural, magnetic and microwave properties of screen printed BaxSr1-XFe12O19 thick films, J. Alloys Compd. 682 (2016), pp. 730–737. doi: 10.1016/j.jallcom.2016.04.310
  • M. Labeyrie, J.C. Mage, W. Simonet, J.M. Desvignes, and H. Le Gall, FMR linewidth of barium hexaferrite at millemeter wavelengths, IEEE. Trans. Magn. Mag. 20 (1984), pp. 1224–1226. doi: 10.1109/TMAG.1984.1063525
  • G. Litsardakis, I. Manolakis, C. Serletis, K.G. Efthimiadis, Structural and magnetic properties of barium–gadolinium hexaferrites, J. Magn. Magn. Mater. 310 (2007), pp. e884–e886. doi: 10.1016/j.jmmm.2006.10.1107
  • F. Kools, A. Morel, R. Grossinger, J.M. Le Breton, and P. Tenaud, LaCo-substituted ferrite magnets, a new class of high-grade ceramic magnets; intrinsic and microstructural aspects, J. Magn. Magn. Mater. 242–245 (2002), pp. 1270–1276. doi: 10.1016/S0304-8853(01)00988-X
  • H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2 (1969), pp. 65–71. doi: 10.1107/S0021889869006558
  • http://www.ill.eu/sites/fullprof/.
  • S.V. Trukhanov, N.V. Kasper, I.O. Troyanchuk, M. Tovar, H. Szymczak, and K. Bärner, Evolution of magnetic state in the La1-xCaxMnO3-γ (x = 0.30, 0.50) manganites depending on the oxygen content, J. Sol. State Chem. 169 (2002), pp. 85–95. doi: 10.1016/S0022-4596(02)00028-2
  • V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, and S.V. Trukhanov, Self-doped lanthanum manganites as a phase-separated system: transformation of magnetic, resonance, and transport properties with doping and hydrostatic compression, J. Appl. Phys. 104 (2008), pp. 093909–9. doi: 10.1063/1.3007993
  • V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, and A.M. Balagurov, Study of the crystalline and magnetic structures of BaFe11.4Al0.6O19 in a wide temperature range, J. Surf. Investig. 9 (2015), pp. 17–23. doi: 10.1134/S1027451015010176
  • S.V. Trukhanov, A.V. Trukhanov, V.O. Turchenko, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, and A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12−xInxO19 (x=0.1–1.2) solid solutions, J. Magn. Magn. Mater. 417 (2016), pp. 130–136. doi: 10.1016/j.jmmm.2016.05.052
  • S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, and A.M. Balagurov, Structure and magnetic properties of BaFe11.9In0.1O19 hexaferrite in a wide temperature range, J. Alloys Compd. 689 (2016), pp. 383–393. doi: 10.1016/j.jallcom.2016.07.309
  • R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976), pp. 751–767. doi: 10.1107/S0567739476001551
  • A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, I.S. Kazakevich, An.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, V.A. Turchenko, M.M. Salem, and A.M. Balagurov, Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range, J. Magn. Magn. Mater. 426 (2017), pp. 487–496. doi: 10.1016/j.jmmm.2016.10.140
  • S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.A. Turchenko, I.S. Kazakevich, An.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, and A.M. Balagurov, Thermal evolution of exchange interactions in lightly doped barium hexaferrites, J. Magn. Magn. Mater. 426 (2017), pp. 554–562. doi: 10.1016/j.jmmm.2016.10.151
  • A.V. Trukhanov, S.V. Trukhanov, L.V. Paninaet al., Strong corelation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics, Ceram. Int 43 (2017), pp. 5635–5641. doi: 10.1016/j.ceramint.2017.01.096
  • P. Shepherd, K.K. Mallick, and R.J. Green, Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation, J. Magn. Magn. Mater. 311 (2007), pp. 683–692. doi: 10.1016/j.jmmm.2006.08.046
  • A.L. Kozlovskiy, D.I. Shlimas, I.E. Kenzhinaet al., The influence of thermal annealing on structural properties of Ni nanotubes, Vacuum 153 (2018), pp. 254–261. doi: 10.1016/j.vacuum.2018.04.033
  • E.W. Gorter, Some properties of ferrites in connection with their chemistry, Proc. IRE 43 (1955), pp. 1945–1973. doi: 10.1109/JRPROC.1955.278060
  • S.V. Trukhanov, Magnetic and magnetotransport properties of La1−xBaxMnO3−x/2 perovskite manganites, J. Mater. Chem. 13 (2003), pp. 347–352. doi: 10.1039/b208664f
  • I.E. Dzyaloshinskii and D.L. Mills, Intrinsic paramagnetism of ferroelectrics, Phil. Mag. 89 (2009), pp. 2079–2082. doi: 10.1080/14786430802653410
  • L.D. Landau, L.P. Pitaevskii, E.M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed., Butterworth-Heinemann, Oxford, 1984. p. 253.
  • A.J.E. Welch, P.F. Nicks, A. Fairweather, and F.F. Roberts, Natural ferromagnetic resonance, Phys. Rev. 77 (1950), pp. 403–403. doi: 10.1103/PhysRev.77.403
  • C.C. Chauhan, A.R. Kagdi, R.B. Jotaniaet al., Structural, magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase, Ceram. Int. 44 (2018), pp. 17812–17823. doi: 10.1016/j.ceramint.2018.06.249
  • P. Röschmann, M. Lemke, W. Tolksdorf, and F. Welz, Anisotropy fields and FMR linewidth in single-crystal Al, Ga and Sc substituted hexagonal ferrites with M structure, Mater. Res. Bull. 19 (1984), pp. 385–392. doi: 10.1016/0025-5408(84)90181-8
  • L.M. Silber and W.D. Wilber, Temperature and frequency dependence of linewidth in BaFe12O19, IEEE Trans. Magn. MAG-22 (1986), pp. 984–986. doi: 10.1109/TMAG.1986.1064408
  • S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinskyet al., Influence of oxygen vacancies on the magnetic and electrical properties of La1-xSrxMnO3-x/2 manganites, Eur. Phys. J. B 42 (2004), pp. 4512–4515. doi: 10.1140/epjb/e2004-00357-8
  • M. El. Rayess, J.B. Sokoloff, C. Vittoria, and W. Spurgeon, Frequency dependence of the ferromagnetic resonance linewidth of barium ferrite, J. Appl. Phys. 67 (1990), pp. 5527–5529. doi: 10.1063/1.345873
  • A. Kozlovskiy, K. Dukenbayev, I. Kenzhinaet al., Effect of swift heavy ions irradiation on AlN ceramics properties, Ceram. Int. 44 (2018), pp. 19787–19793. doi: 10.1016/j.ceramint.2018.07.235
  • S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C. E. Botez, and A. Adair, Magnetotransport properties and mechanism of the A-site ordering in the Nd-Ba optimal-doped manganites, J. Low Temp. Phys. 149 (2007), pp. 185–199. doi: 10.1007/s10909-007-9507-6
  • D. Peddis, M.T. Qureshi, S.H. Baker, C. Binns, M. Roy, S. Laureti, D. Fiorani, P. Nordblad, and R. Mathieu, Magnetic anisotropy and magnetization dynamics of Fe nanoparticles embedded in Cr and Ag matrices, Phil. Mag. 95 (2015), pp. 3798–3807. doi: 10.1080/14786435.2015.1090640
  • C. Kittel, On the theory of ferromagnetic resonance absorption, Phys. Rev. 73 (1948), pp. 155–161. doi: 10.1103/PhysRev.73.155
  • J. Smith and H.P.J. Wijn, Ferrites, John Willey and Sons, New York, Eindhoven, 1959, p. 321.
  • L.G. Van Uitert, Low magnetic saturation ferrites for microwave applications, J. Appl. Phys. 26 (1955), pp. 1289–1290 doi: 10.1063/1.1721895
  • R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, and Y. Bai, Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by Co-precipitation method, J. Magn. Magn. Mater. 381 (2015), pp. 1–9. doi: 10.1016/j.jmmm.2014.12.059
  • L.L. Eremtsova, I. Nedkov, V.P. Cheparin, and A.A. Kitaytsev, Natural ferromagnetic resonance in doped hexaferrites, Inorg. Mater. 8 (1972), pp. 59–65.
  • S.V. Trukhanov, A.V. Trukhanov, M.M. Salemet al., Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O19)1-x - (BaTiO3)x bicomponent ceramics, Ceram. Int. 44 (2018), pp. 21295–21302. doi: 10.1016/j.ceramint.2018.08.180
  • S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, I.O. Troyanchuk, and H. Szymczak, Magnetic phase transitions in the anion-deficient La1-xBaxMnO3-x/2 (0 ≤ x ≤ 0.50) manganites, J. Phys. Condens. Matter, 15 (2003), pp. 1783–1795. doi: 10.1088/0953-8984/15/10/324
  • R.A. Nandotaria, R.B. Jotania, C. Singh Sandhuet al., Magnetic interactions and dielectric dispersion in Mg substituted M-type Sr-Cu hexaferrite nanoparticles prepared using one step solvent free synthesis technique, Ceram. Int. 44 (2018), pp. 4426–4435. doi: 10.1016/j.ceramint.2017.12.043

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.