303
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Grüneisen divergence near the structural quantum phase transition in ScF3

, , ORCID Icon &
Pages 631-643 | Received 02 Apr 2018, Accepted 13 Nov 2018, Published online: 27 Nov 2018

References

  • S. Sachdev, Quantum Phase Transitions, Cambridge University Press, New York, 1999.
  • L.D. Carr, Understanding Quantum Phase Transitions, CRC Press, Boca Raton, 2010.
  • E. Grüneisen, Zusammenhang zwischen kompressibilität, thermischer ausdehnung, atomvolumen und atomw&quote;arme der metalle, Ann. Phys. 26 (1908), pp. 393–402. doi: 10.1002/andp.19083310707
  • E. Grüneisen, Relation between compressibility, thermal expansion, atom volume and atomic heat of the metals, Ann. Phys. 26 (1908), pp. 393–402. translated by Falk H. Koenemann, 2007. doi: 10.1002/andp.19083310707
  • G. Mie, Zur kinetischen theorie der einatomigen k&quote;orper, Ann. Phys. 11 (1903), pp. 657. doi: 10.1002/andp.19033160802
  • T.H.K. Barron, J.G. Collins and G.K. White, Thermal expansion of solids at low tempertures, Adv. Phys. 29 (1980), pp. 609. doi: 10.1080/00018738000101426
  • T.H.K. Barron, Generalized theory of thermal expansion of solids, in Thermal Expansion of Solids, R.E. Taylor, ed., chap. 1, ASM International, 1998, p. 1.
  • T.H.K. Barron and G.K. White, Heat Capacity and Thermal Expansion at Low Temperatures, Kulwer Academic/Plenum Publishers, New York, 1999, and references therein.
  • F.R. Lindemann, The calculation of molecular vibration frequencies, Z. Phys. 11 (1910), pp. 609.
  • A. de Visser, J.J.M. Franse, A. Lacerda, P. Haen and J. Flouquet, Grüneisen parameters of heavy fermion systems, Physica B 163 (1990), pp. 49. doi: 10.1016/0921-4526(90)90126-F
  • R. Küchler, N. Oeschler, P. Gegenwart, T. Cichorek, K. Neumaier, O. Tegus, C. Geibel, J.A. Mydosh, F. Steglich, L. Zhu and Q. Si, Divergence of the Grüneisen ratio at quantum critical points in heavy fermion metals, Phys. Rev. Lett. 91 (2003), pp. 066405. doi: 10.1103/PhysRevLett.91.066405
  • P. Gegenwart, Grüneisen parameter studies on heavy fermion quantum criticality, Rep. Prog. Phys 79 (2016), pp. 114502. doi: 10.1088/0034-4885/79/11/114502
  • P. Gegenwart, Classification of materials with divergent magnetic Grüneisen parameter, Phil. Mag. 97 (2017), pp. 3415–3427. doi: 10.1080/14786435.2016.1235803
  • A.C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press, Cambridge, 1993.
  • S. Doniach, The Kondo lattice and weak antiferromagnetism, Physica B + C 91 (1997), pp. 231–234. doi: 10.1016/0378-4363(77)90190-5
  • J.A. Khan and D. Griffiths, Anomalous thermal expansion of dilute CuMn and AgMn alloys below 50K, J. Phys. F 8 (1978), pp. 763. doi: 10.1088/0305-4608/8/5/009
  • M.A. Simpson and T.F. Smith, Magnetic grüneisen parameters of the kondo systems CuFe, CuCr, and MoFe, J. Phys. F 11 (1981), pp. 397–404. doi: 10.1088/0305-4608/11/2/012
  • P.W. Bridgman, The compressibility and pressure coefficient of resistance of ten elements, Proc. Am. Acad. Arts Sci. 62 (1927), pp. 207–226. doi: 10.2307/25130122
  • J.W. Allen and R.M. Martin, Kondo volume collapse and the γ→α transition in cerium, Phys. Rev. Lett. 49 (1982), pp. 1106–1110. doi: 10.1103/PhysRevLett.49.1106
  • C.W. Li, X. Tang, J.A. Munõz, J.B. Keith, S.J. Tracy, D.L. Abernathy and B. Fultz, Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3, Phys. Rev. Lett. 107 (2011), pp. 195504.
  • L. Zhu, M. Garst, A. Rosch and Q. Si, Universally diverging Grüneisen parameter and the magnetocaloric effect close to quantum critical points, Phys. Rev. Lett. 91 (2003), pp. 066404–1.
  • M. Garst and A. Rosch, Sign change of the Grüneisen parameter and magnetocaloric effect near quantum critical points, Phys. Rev. B 72 (2005), pp. 205129.
  • B.K. Greve, K.L. Martin, P.L. Lee, P.J. Chupas, K.W. Chapman and A.P. Wilkinson, Pronounced negative thermal expansion from a simple structure: Cubic ScF3, J. Am. Chem. Soc. 132 (2010), pp. 15496–15498. doi: 10.1021/ja106711v
  • C.R. Morelock, B.K. Greve, L.C. Gallington, K.W. Chapman and A.P. Wilkinson, Negative thermal expansion and compressibility of Sc1−xYxF3 (x≤0.25), J. Appl. Phys. 114 (2013), pp. 213501. doi: 10.1063/1.4836855
  • S.U. Handunkanda, E.B. Curry, V. Voronov, A.H. Said, G.G. Guzmán Verri, R.T. Brierley, P.B. Littlewood and J.N. Hancock, Large isotropic negative thermal expansion above a structural quantum phase transition, Phys. Rev. B 92 (2015), pp. 134101. doi: 10.1103/PhysRevB.92.134101
  • G.D. Barrera, J.A.O. Bruno, T.H.K. Barron and N.L. Allan, Negative thermal expansion, J. Phys.: Condens. Matter 17 (2005), pp. R217–R252.
  • M. Dapiaggi and A.N. Fitch, Negative (and very low) thermal expansion in ReO3 from 5 to 300 K, J. Appl. Cryst. 42 (2009), pp. 253–258. doi: 10.1107/S002188980804332X
  • E.E. Rodriguez, A. Llobet, T. Proffen, B.C. Melot, R. Seshadri, P.B. Littlewood and A.K. Cheetham, The role of static disorder in negative thermal expansion in ReO3, J. Appl. Phys. 105 (2009), pp. 114901.
  • T. Chatterji, P.F. Henry, R. Mittal and S.L. Chaplot, Negative thermal expansion of R3O3: neutron diffraction experiments and dynamical lattice calculations, Phys. Rev. B 78 (2008), pp. 134105.
  • M.J. Lipp, D. Jackson, H. Cynn, C. Aracne, W.J. Evans and A.K. McMahan, Thermal signatures of the kondo volume collapse in cerium, Phys. Rev. Lett. 101 (2008), pp. 165703. doi: 10.1103/PhysRevLett.101.165703
  • C.P. Romao, C.R. Morelock, M.B. Johnson, J.W. Zwanziger, A.P. Wilkinson and M.A. White, The heat capacities of thermomiotic ScF3 and ScF3–YF3 solid solutions, J. Mater. Sci. 50 (2015), pp. 3409–3415. doi: 10.1007/s10853-015-8899-y
  • P.C. Canfield and S.L. Bud'ko, Preserved entropy and fragile magnetism, Rep. Prog. Phys. 79 (2016), pp. 084506. doi: 10.1088/0034-4885/79/8/084506
  • K.S. Aleksandrov, V.N. Voronov, A.N. Vtyurin, S.V. Goryainov, N.G. Zamkova, V.I. Zinenko and A.S. Krylov, Lattice dynamics and hydrostatic-pressure-induced phase transitions in scf3, J. Exp. Theo. Phys. 94 (2002), pp. 977–984. doi: 10.1134/1.1484991
  • C.R. Morelock, M.R. Suchomel and A.P. Wilkinson, A cautionary tale on the use of GE-7031 varnish: low-temperature thermal expansion studies of ScF3, J. Appl. Crystal. 46 (2013), pp. 823–825. doi: 10.1107/S0021889813005955
  • A. Mogus-Milankovic, J. Ravez, J. Chaminade and P. Hagenmuller, Ferroelastic properties of TF3 compounds (T = Ti, V, Cr, Fe, Ga), Mat. Res. Bull. 20 (1985), pp. 9–17. doi: 10.1016/0025-5408(85)90021-2
  • P. Daniel, A. Bulou, M. Rousseau, J. Nouet and M. Leblanc, Raman-scattering study of crystallized MF3 compounds (M=Al,Cr,Ga,V,Fe,In): an approach to the short-range-order force constants, Phys. Rev. B 42 (1990), pp. 10545. doi: 10.1103/PhysRevB.42.10545
  • C.R. Morelock, L.C. Gallington and A.P. Wilkinson, Evolution of negative thermal expansion and phase transitions in Sc1−xTixF3, Chem. Mater. 26 (2014), pp. 1936–1940. doi: 10.1021/cm5002048
  • C.R. Morelock, L.C. Gallington and A.P. Wilkinson, Solid solubility, phase transitions, thermal expansion, and compressibility in Sc1−xAlxF3, J. Sol. St. Chem. 222 (2015), pp. 96–102. doi: 10.1016/j.jssc.2014.11.007
  • E.K.J. Salje, M.C. Gallardo, J. Jiménez, F.J. Romero and J. del Cerro, The cubic-tetragonal phase transition in strontium titanate: excess specific heat measurements and evidence for a near-tricritical, mean field type transition mechanism, J. Phys.: Condens. Matter 10 (1998), pp. 5535–5543.
  • A. Bussmann-Holder, Relation between structural instabilities in EuTiO3 and SrTiO3, Phys. Rev. B 83 (2011), pp. 212102. doi: 10.1103/PhysRevB.83.212102
  • S. Tsunekawa, H.F.J. Watanabe and H. Takei, Linear thermal expansion of srtio3, Phys. Stat. Sol. 83 (1984), pp. 467–472. doi: 10.1002/pssa.2210830207
  • S.E. Rowler, L.J. Spalek, R.P. Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich and S.S. Saxena, Ferroelectric quantum criticality, Nat. Phys. 10 (2014), pp. 367–372. doi: 10.1038/nphys2924
  • V.R. Lösch, C. Hebecker and Z. Ranft, Röntgenographische Untersuchungen an neuen ternären Fluoriden vom Typ TlIIIMF6 (M = Ga, In, Sc) sowie an Einkristallen von ScF3, Z. Annorg. Allg. Chem. 491 (1982), pp. 199–202. doi: 10.1002/zaac.19824910125
  • G.M. Schmiedeshoff, A.W. Lounsbury, D.J. Luna, S.J. Tracy, A. Schramm, S.W. Tozer, V.F. Correa, S.T. Hannahs, T.P. Murphy, E.C. Palm, A.H. Lacerda, S.L. Bud'ko, P.C. Canfield, J.L. Smith, J.C. Lashley and J.C. Cooley, A versatile and compact capacitive dilatometer, Rev. Sci. Instrum. 77 (2006), pp. 123907. doi: 10.1063/1.2403088
  • A.B. Pippard, The Elements of Classical Thermodynamics, Cambridge University Press, Cambridge, 1957.
  • P.W. Anderson, B.I. Halperin and C.M. Varma, Anomalous low-temperature thermal properties of glasses and spin glasses, Phil. Mag. 25 (1972), pp. 1–9. doi: 10.1080/14786437208229210
  • P.V. Giaquinta, N.J. March, M. Parrinello and M.P. Tosi, Linear specific heat of disordered solids at low temperatures, Phys. Rev. Lett. 39 (1977), pp. 41. doi: 10.1103/PhysRevLett.39.41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.