171
Views
7
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Electron-related optical responses in triple δ-doped quantum wells

, ORCID Icon, , &
Pages 644-658 | Received 20 Aug 2018, Accepted 13 Nov 2018, Published online: 25 Nov 2018

References

  • H. Ganjipour and Gh. Safarpour, The effects of pressure and hydrogenic donor impurity on the linear and nonlinear optical properties of a GaAs/GaAlAs nanowire superlattice, Physica E 74 (2015), pp. 496–504. doi: 10.1016/j.physe.2015.07.033
  • S. Almansour, H. Dakhlaoui, and E. Algrafy, Effect of Si δ-doping on the linear and nonlinear optical absorptions and refractive index changes in InAlN/GaN Single Quantum Wells, Chin. Phys. Lett. 33 (2016), pp. 027301.
  • A.L. Vartanian, A.L. Asatryan, and L.A. Vardanyan, Influence of image charge effect on impurity-related optical absorption coefficients and refractive index changes in a spherical quantum dot, Superlatt. Microstruc. 103 (2017), pp. 205–212. doi: 10.1016/j.spmi.2017.01.037
  • I. Karabulut and S. Baskoutas, Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity, J. Appl. Phys. 103 (2008), pp. 073512–5.
  • P. Kumari, S. Sinha, and L.K. Mishra, A theoretical evaluation of changes of refractive index as a function of photon energy for different incident optical intensities and fixed length of quantum wire, J. Pure Appl. Ind. Phys. 7(6) (2017), pp. 264–274.
  • R. Khordad and H. Bahramiyan, Effects of electron-phonon interaction and impurity on optical properties of hexagonal-shaped quantum wires, Pramana-J. Phys. 88 (2017), pp. 50. doi: 10.1007/s12043-016-1348-x
  • J.C. Martinez-Orozco, J.G. Rojas-Briseno, K.A. Rodriguez-Magdaleno, I. Rodriguez-Vargas, M.E. Mora-Ramos, R.L. Restrepo, F. Ungan, E. Kasapoglu, and C.A. Duque, Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells, Physica B 525 (2017), pp. 30–35. doi: 10.1016/j.physb.2017.08.082
  • H. Bahramiyan, Electric field and impurity effect on nonlinear optical rectification of a double cone like quantum dot, Opt. Mat. 75 (2018), pp. 187–195. doi: 10.1016/j.optmat.2017.10.014
  • K. Li, K. Guo, and L. Liang, Shape effect on the second order nonlinear optical properties in triangular quantum dots with applied electric field, Superlatt. Microstruc. 111 (2017), pp. 146–155. doi: 10.1016/j.spmi.2017.06.028
  • J.H. Yuan, Y. Zhang, H. Mo, N. Chen, and Z. Zhang, The second-harmonic generation susceptibility in semiparabolic quantum wells with applied electric field, Opt. Commun. 356 (2015), pp. 405–410. doi: 10.1016/j.optcom.2015.08.030
  • X. Liu, L. Zou, C. Liu, Z.H. Zhang, and J.H. Yuan, The nonlinear optical rectification and second harmonic generation in asymmetrical Gaussian potential quantum well: Effects of hydrostatic pressure, temperature and magnetic field, Opt. Mat. 53 (2016), pp. 218–223. doi: 10.1016/j.optmat.2016.01.043
  • E.C. Niculescu, M. Cristea, and A. Radu, Magnetic field effect on the third harmonic generation in quantum well wires with triangular cross-section, Physica E 57 (2014), pp. 138–144. doi: 10.1016/j.physe.2013.10.036
  • R. Khordad, Third-harmonic generation in a double ring-shaped quantum dot under electron-phonon interaction, Opt. Commun. 391 (2017), pp. 121–127. doi: 10.1016/j.optcom.2017.01.017
  • K. Li, K. Guo, and L. Liang, Effect of the shape of quantum dots on the third-harmonic generations, Superlatt. Microstruc. 102 (2017), pp. 300–306. doi: 10.1016/j.spmi.2016.12.052
  • A. Radu and C.A. Duque, Non-linear optical processes involving excited subbands in laser-dressed quantum wires with triangular cross-section, Physica E 72 (2015), pp. 165–177. doi: 10.1016/j.physe.2015.05.004
  • D. Bejan, C. Stan, and E.C. Niculescu, Effects of electric field and light polarization on the electromagnetically induced transparency in an impurity doped quantum ring, Opt. Mat. 75 (2018), pp. 827–840. doi: 10.1016/j.optmat.2017.11.047
  • A. Zamani, F. Setareh, T. Azargoshasb, E. Niknam, and E. Mohammadhosseini, Rashba and Dresselhaus spin-orbit couplings effects on electromagnetically induced transparency of a lens-shaped quantum dot: External electric and magnetic fields, Superlatt. Microstruc. 106 (2017), pp. 111–121. doi: 10.1016/j.spmi.2017.03.038
  • Sk.Md. Arif, A. Bera, A. Ghosh, and M. Ghosh, Exploring DC-Kerr effect of impurity doped quantum dots under the aegis of noise, Opt. Mat. 76 (2018), pp. 237–252. doi: 10.1016/j.optmat.2017.12.038
  • N. Li, K.X. Guo, and S. Shao, Polaron effects on the optical absorption coefficients and refractive index changes in a square quantum well, Superlatt. Microstruc. 50 (2011), pp. 461–469. doi: 10.1016/j.spmi.2011.08.004
  • M. Hosseini, Tailoring the terahertz absorption in the quantum wells, Optik 127 (2017), pp. 4554–4558. doi: 10.1016/j.ijleo.2016.01.158
  • E.C. Niculescu, N. Eseanu, and A. Radu, Heterointerface effects on the nonlinear optical rectification in a laser-dressed graded quantum well, Opt. Commun. 294 (2013), pp. 276–282. doi: 10.1016/j.optcom.2012.12.038
  • H. Hassanabadi, G. Liu, and L. Lu, Nonlinear optical rectification and the second-harmonic generation in semi-parabolic and semi-inverse squared quantum wells, Solid State Commun. 152 (2012), pp. 1761–1766. doi: 10.1016/j.ssc.2012.05.023
  • A. Keshavarz and M.J. Karimi, Linear and nonlinear intersubband optical absorption in symmetric double semi-parabolic quantum wells, Phys. Lett. A 374 (2010), pp. 2675–2680. doi: 10.1016/j.physleta.2010.04.049
  • G.L. Miranda, M.E. Mora-Ramos, and C.A. Duque, Nonlinear optical rectification associated to exciton states in asymmetric coupled double quantum wells, Physica E 50 (2013), pp. 108–115. doi: 10.1016/j.physe.2013.03.008
  • G.L. Miranda, M.E. Mora-Ramos, and C.A. Duque, Exciton-related nonlinear optical absorption and refractive index change in GaAs−Ga1−xAlxAs double quantum wells, Physica B 409 (2013), pp. 78–82. doi: 10.1016/j.physb.2012.10.008
  • M.C.A. Lima, G.A. Farias, and V.N. Freire, Interface effects on the resonant tunnelling in GaAs−Ga1−xAlxAs double-quantum-well triple-barriers, Microelec. Engineer. 43 (1998), pp. 191–195. doi: 10.1016/S0167-9317(98)00163-4
  • E. Kasapoglu and I. Sökmen, The effects of intense laser field and electric field on intersubband absorption in a double-graded quantum well, Physica B 403 (2008), pp. 3746–3750. doi: 10.1016/j.physb.2008.06.024
  • E.C. Niculescu, A. Radu, and M. Stafe, Laser effects on the donor states in V-shaped and inverse V-shaped quantum wells, Superlatt. Microstruc. 46 (2009), pp. 443–450. doi: 10.1016/j.spmi.2009.04.001
  • H. Panahi, S. Golshahi, and M. Doostder, Influence of position dependent effective mass on donor binding energy in square and V-shaped quantum wells in the presence of a magnetic field, Physica B 418 (2013), pp. 47–51. doi: 10.1016/j.physb.2013.02.032
  • J. Radovanovic, V. Milanovic, Z. Ikonic, and D. Indjin, Intersubband absorption in Pöschl-Teller-like semiconductor quantum wells, Phys. Lett. A 269 (2000), pp. 179–185. doi: 10.1016/S0375-9601(00)00238-3
  • C.A. Duque, M.E. Mora-Ramos, and M.G. Barseghyan, Electronic states in a Pöschl-Teller-like quantum well: Combined effects of electric field, hydrostatic pressure, and temperature, Superlatt. Microstruc. 50 (2011), pp. 480–490. doi: 10.1016/j.spmi.2011.08.010
  • Z.H. Zhang, C. Lui, and K.X. Guo, Electron-phonon interaction effect on the refractive index changes in a Modified-Pöschl-Teller quantum well, Optik 127 (2016), pp. 1590–1594. doi: 10.1016/j.ijleo.2015.10.233
  • R. Khordad and B. Mirhosseini, Linear and nonlinear optical properties in spherical quantum dots: Rosen-Morse potential, Opt. Spect. 117(3) (2014), pp. 434–440. doi: 10.1134/S0030400X14090100
  • D.B. Hayrapetyan, E.M. Kazaryan, T.V. Kotajyan, and H.K. Tevosyan, Exciton states and interband absorption of cylindrical quantum dot with Morse confining potential, Superlatt. Microstruc. 78 (2015), pp. 40–49. doi: 10.1016/j.spmi.2014.11.025
  • A. Dehyar, G. Rezaei, and A. Zamani, Electronic structure of a spherical quantum dot: Effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields, Physica E 84 (2016), pp. 175–181. doi: 10.1016/j.physe.2016.05.038
  • L.M. Gaggero-Sager and R. Perez-Alvarez, A simple model for delta-doped field-effect transistor electronic states, J. Appl. Phys. 78 (1995), pp. 4566. doi: 10.1063/1.359800
  • H. Yildirim and M. Tomak, Nonlinear intersubband optical absorption of Si δ-doped GaAs under an electric field, Phys. Stat. Sol. (b) 243 (2006), pp. 2874–2881. doi: 10.1002/pssb.200642065
  • J.C. Martinez-Orozco, M.E. Mora-Ramos, and C.A. Duque, Nonlinear optical rectification and second and third harmonic generation in GaAs δ−FET systems under hydrostatic pressure, J. Lumin. 132 (2012), pp. 449–456. doi: 10.1016/j.jlumin.2011.09.022
  • R.K. Nayak, S. Das, A.K. Panda, and T. Sahu, Structural asymmetry induced size quantized nonmonotonous electron mobility in GaAs−Ga1−xAlxAs double quantum well structure, Superlatt. Microstruc. 89 (2016), pp. 75–82. doi: 10.1016/j.spmi.2015.10.041
  • A. Keshavarz and N. Zamani, Optimization of optical absorption coefficient in asymmetric double rectangular quantum wells by PSO algorithm, Opt. Commun. 294 (2013), pp. 401–404. doi: 10.1016/j.optcom.2012.12.039
  • B. Chen, K.X. Guo, R.Z. Wang, and Z.H. Zhang, Optical second harmonic generation in asymmetric double triangular quantum wells, Superlatt. Microstruc. 45 (2009), pp. 125–133. doi: 10.1016/j.spmi.2009.01.005
  • N. Zeiri, N. Sfina, S. Abdi-Ben Nasrallah, and M. Said, Linear and non-linear optical properties in symmetric and asymmetric double quantum wells, Optik 124 (2013), pp. 7044–7048. doi: 10.1016/j.ijleo.2013.05.169
  • M.J. Karimi, A. Keshavarz, and A. Poostforush, Linear and nonlinear intersubband optical absorption and refractive index changes of asymmetric double semi-parabolic quantum wells, Superlatt. Microstruc. 49 (2011), pp. 441–452. doi: 10.1016/j.spmi.2011.01.003
  • I. Karabulut, M.E. Mora-Ramos, and C.A. Duque, Nonlinear optical rectification and optical absorption in GaAs−Ga1−xAlxAs asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure, J. Lumin. 131 (2011), pp. 1502–1509. doi: 10.1016/j.jlumin.2011.03.044
  • S. Glutsch, D.S. Chemla, and F. Bechstedt, Numerical calculation of the optical absorption in semiconductor quantum structures, Phys. Rev. B 54 (1996), pp. 11592–11601. doi: 10.1103/PhysRevB.54.11592
  • C.P. Allford and P.D. Buckle, Strain compensated InGaAs/AlAs triple barrier resonant tunneling structures for THz applications, IEEE Trans. THz Sci. Tech. 7 (2017), pp. 772–779. doi: 10.1109/TTHZ.2017.2758266
  • T. Kobayashi, T. Ariki, M. Iwabuchi, T. Maki, S. Shikama, and S. Suzuki, Analytical studies on multiple delta doping in diamond thin films for efficient hole excitation and conductivity enhancement, J. Appl. Phys. 76 (1994), pp. 1977–1979. doi: 10.1063/1.357661
  • M.J. Kao, W.C. Hsu, R.T. Hsu, Y.H. Wu, and T.Y. Lin, Characteristics of graded-like multiple-delta-doped GaAs field effect transistors, Appl. Phys. Lett. 66 (1995), pp. 2505–2506. doi: 10.1063/1.113148
  • H. El-Hajj, A. Denisenko, A. Bergmaier, G. Dollinger, M. Kubovic, and E. Kohn, Diamond MISFET based on boron delta-doped channel, Diam. Relat. Mater. 17 (2008), pp. 1259–1263. doi: 10.1016/j.diamond.2008.02.015
  • A. Fiori, New generations of boron-doped diamond structures by delta-doping technique for power electronics: CVD growth and characterization, Ph. D. thesis, UNiversity of Grenoble, 2012.
  • N. Radhakrishnan and A. John Peter, Polaronic effects on laser dressed donor impurities in a quantum well, Physica E 41 (2009), pp. 1841–1847. doi: 10.1016/j.physe.2009.07.012
  • L. Ioriatti, Thomas-Fermi theory of δ-doped semiconductor structures: Exact analytical results in the high-density limit, Phys. Rev. B 41 (1990), pp. 8340–8344. doi: 10.1103/PhysRevB.41.8340
  • L.M. Gaggero-Sager, J.C. M'Peko, and R. Perez-Alvarez, Thomas-Fermi approximation in two p-type delta-doped quantum wells in GaAs and Si, Rev. Mex. Fis. 47 (2001), pp. 153–157.
  • I. Rodriguez-Vargas and L.M. Gaggero-Sager, Subband and transport calculations in double n-type δ-doped quantum wells in Si, J. Appl. Phys. 99 (2006), pp. 033702–7. doi: 10.1063/1.2168024
  • I. Rodriguez-Vargas and L.M. Gaggero-Sager, Subband structure comparision between n-and p-type double delta-doped GaAs quantum wells, Rev. Mex. Fis. 50(6) (2004), pp. 614–619.
  • J.-B. Xia and W.-J. Fan, Electronic structures of superlattices under in-plane magnetic field, Phys. Rev. B 40 (1989), pp. 8508–8515. doi: 10.1103/PhysRevB.40.8508
  • E.M. Goldys and J.J. Shi, Linear and nonlinear intersubband optical absorption in a strained double barrier quantum well, Phys. Status Solidi (b) 210 (1998), pp. 237–248. doi: 10.1002/(SICI)1521-3951(199811)210:1<237::AID-PSSB237>3.0.CO;2-V
  • D. Ahn and S.L. Chuang, Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field, IEEE J. Quantum Electron. QE-23 (1987), pp. 2196–2204.
  • S. Unlu, I. Karabulut, and H. Safak, Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential, Physica E 33 (2006), pp. 319–324. doi: 10.1016/j.physe.2006.03.163
  • E. Ozturk, H. Sari, Y. Ergun, and I. Sökmen, The triple Si δ-doped GaAs structure, Appl. Phys. A 80 (2005), pp. 167–171. doi: 10.1007/s00339-003-2285-3
  • E. Ozturk, Nonlinear transitions in single, double, and triple δ-doped GaAs structure, Romanian J. Phys. 602 (2017), pp. 603–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.