533
Views
14
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Helium bubble nucleation at grain boundaries and its influence on intergranular fracture

, &
Pages 679-698 | Received 09 Jun 2018, Accepted 16 Nov 2018, Published online: 05 Dec 2018

References

  • S.J. Zinkle and G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (3) (2013), pp. 735–758. doi: 10.1016/j.actamat.2012.11.004
  • H. Trinkaus and B.N. Singh, Helium accumulation in metals during irradiation - where do we stand? J. Nucl. Mater. 323 (2003), pp. 229–242. doi: 10.1016/j.jnucmat.2003.09.001
  • W.Z. Han, M.J. Demkowicz, E.G. Fu, Y.Q. Wang, and A. Misra, Effect of grain boundary character on sink efficiency, Acta Mater. 60 (2012), pp. 6341–6351. doi: 10.1016/j.actamat.2012.08.009
  • P.L. Lane and P.J. Goodhew, Helium bubble nucleation at grain boundaries, Philos. Mag. 48 (1983), pp. 965–986. doi: 10.1080/01418618308244330
  • P.A. Thorsen, J.B. Bilde-Sørensen, and B.N. Singh, Bubble formation at grain boundaries in helium implanted copper, Scripta Mater. 51 (2004), pp. 557–560. doi: 10.1016/j.scriptamat.2004.05.038
  • A.M. Robinson, P.D. Edmondson, C. English, S. Lozano-Perez, G. Greaves, J.A. Hinks, S.E. Donnelly, and C.R.M. Grovenor, The effect of temperature on bubble lattice formation in copper under in situ He ion irradiation, Scripta Mater. 131 (2017), pp. 108–111. doi: 10.1016/j.scriptamat.2016.12.031
  • W.R. Corwin, U.S. Generation IV reactor integrated materials technology program, Nucl. Eng. Technol. 38 (2006), pp. 591–618.
  • M.A. Stopher, The effects of neutron radiation on nickel-based alloys, Mater. Sci. Technol. 33 (2017), pp. 518–536. doi: 10.1080/02670836.2016.1187334
  • M.R. Gilbert, S.L. Dudarev, S. Zheng, L.W. Packer, and J.-Ch. Sublet, An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation, Nucl. Fusion 52 (2012), pp. 083019–083031. doi: 10.1088/0029-5515/52/8/083019
  • W. Kesternich and J. Rothaut, Reduction of helium embrittlement in stainless steel by finely dispersed TiC precipitates, J. Nucl. Mater. 104 (1981), pp. 845–852. doi: 10.1016/0022-3115(82)90705-X
  • H. Riedel, Fracture at High Temperatures, Springer-Verlag, New York, 1987.
  • R. Raj and M.F. Ashby, Intergranular fracture at elevated temperature, Acta Metall. 23 (1975), pp. 653–666. doi: 10.1016/0001-6160(75)90047-4
  • I.J. Ford, Intergranular fracture of fast reactor irradiated stainless steel, Acta Metall. Mater. 40 (1992), pp. 113–122. doi: 10.1016/0956-7151(92)90204-R
  • J.N. Al-Hajji and N.M. Ghoniem, Nucleation of grain boundary cavities under the combined influence of helium and applied stress, Acta Metall. 35 (1987), pp. 1067–1075. doi: 10.1016/0001-6160(87)90054-X
  • K.C. Russell, Phase Transformations, ASM, Metals Park, Ohio, 1970.
  • G.P. Tiwari and J. Singh, Consideration of swelling and thermodynamic stability of inert gas bubbles in solids, J. Nucl. Mater. 195 (1992), pp. 205–215. doi: 10.1016/0022-3115(92)90378-X
  • S.W. Ip and J.M. Toguri, The equivalency of surface tension, energy and surface free energy, J. Mater. Sci. 29 (1994), pp. 688–692. doi: 10.1007/BF00445980
  • J.K. Lee and H.I. Aaronson, Influence of faceting upon the equilibrium shape of nuclei at grain boundaries - I. Two-dimensions, Acta Metall. 23 (1975), pp. 799–808. doi: 10.1016/0001-6160(75)90196-0
  • W.C. Johnson, C.L. White, P.E. Marth, P.K. Ruf, S.M. Tuominen, K.D. Wade, K.C. Russell, and H.I. Aaronson, Influence of crystallography on aspects of solid-solid nucleation theory, Metall. Trans. A 6 (1975), pp. 911–919. doi: 10.1007/BF02672315
  • R. Raj, Nucleation of cavities at second phase particles in grain boundaries, Acta Metall. 26 (1978), pp. 995–1006. doi: 10.1016/0001-6160(78)90050-0
  • W.T. Read and W. Shockley, Dislocation models of crystal grain boundaries, Phys. Rev. 78 (1950), pp. 275–289. doi: 10.1103/PhysRev.78.275
  • E.J. Mittemeijer, Fundamentals of Materials Science: The Microstructure-Property Relationship Using Metals as Model Systems, Springer, Heidelberg, 2010.
  • Y.V. Martynenko, The theory of blister formation, Radiat. Eff. 45 (1979), pp. 93–101. doi: 10.1080/00337577908208414
  • L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Pergamon, Oxford, 1986.
  • R. Panat, K.J. Hsia, and D.G. Cahill, Evolution of surface waviness in thin films via volume and surface diffusion, J. Appl. Phys. 97 (2005), pp. 013521–013527. doi: 10.1063/1.1827920
  • https://en.wikipedia.org/wiki/Nickel.
  • A. Czyrska -Filemonowicz and W. Kesternich, Helium bubble formation in model nickel-base alloys, J. Nucl. Mater. 137 (1985), pp. 33–43. doi: 10.1016/0022-3115(85)90046-7
  • L. Yang, F. Gao, R.J. Kurtz, and X.T. Zu, Atomistic simulations of helium clustering and grain boundary reconstruction in alpha-iron, Acta Mater. 82 (2015), pp. 275–286. doi: 10.1016/j.actamat.2014.09.015
  • A.J.E. Foeman and B.N. Singh, Bubble nucleation in grain interior and its influence on helium accumulation at grain boundaries, J. Nucl. Mat. 133–134 (1985), pp. 451–454. doi: 10.1016/0022-3115(85)90187-4
  • F.L. Vogel Jr., Dislocations in low-angle boundaries in germanium, Acta Metall. 3 (1955), pp. 245–248. doi: 10.1016/0001-6160(55)90059-6
  • P.L. Lane and P.J. Goodhew, Helium bubbles at grain boundaries in an austenitic alloy, J. Nucl. Mater. 122 (1984), pp. 509–513. doi: 10.1016/0022-3115(84)90647-0
  • H. Trinkaus, On the modeling of the high-temperature embrittlement of metals containing helium, J. Nucl. Mater. 118 (1983), pp. 39–49. doi: 10.1016/0022-3115(83)90177-0
  • B.N. Singh, M. Eldrup, and A. Möslang, Effect of hot implantation of helium in copper on bubble formation within grains and on grain boundaries, in Effects of Radiation on Materials: 16th International Symposium, A.S. Kumar, D.S. Gelles, R.K. Nanstad, and E.A. Little, eds., ASTM STP 1175, Philadelphia, 1993, pp. 1061–1073.
  • L. Priester, Grain Boundaries: From Theory to Engineering, vol. 172, Springer, Dordrecht, 2013.
  • J.J. Bean and K.P. McKenna, Origin of differences in the excess volume of copper and nickel grain boundaries, Acta Mater. 110 (2016), pp. 246–257. doi: 10.1016/j.actamat.2016.02.040
  • G.R. Caskey Jr., D.E. Rawl Jr., and D.A. Mezzanotte Jr., Helium Damage in Austenitic Stainless Steels, 112th AIME Annual Meeting, Atlanta, GA, 1983.
  • G.R. Caskey Jr., D.E. Rawl Jr., and D.A. Mezzanotte Jr., Helium embrittlement of stainless steel at ambient temperature, Scripta Metall. 16 (1982), pp. 969–972. doi: 10.1016/0036-9748(82)90135-1
  • W.J. Mills, Fracture toughness of type 304 and 316 stainless steels and their welds, Int. Mater. Rev. 42 (1997), pp. 45–82. doi: 10.1179/imr.1997.42.2.45
  • L.L. Snead, R.E. Stoller, M.A. Sokolov, and S. Maloy. Experimental determination of the effect of helium on the fracture toughness of steel, J. Nucl. Mater. 307–311 (2002), pp. 187–191. doi: 10.1016/S0022-3115(02)01180-7
  • M. Song and D.W. Huang, Experimental and modeling of the coupled influences of variously sized particles on the tensile ductility of SiC(p)/Al metal matrix composites, Metall. Mater. Trans. A 38 (2007), pp. 2127–2137. doi: 10.1007/s11661-007-9276-5
  • M.P. Puls, Effects of crack tip stress states and hydride-matrix interaction stresses on delayed hydride cracking, Metall. Trans. A, 21 (1990), pp. 2905–2917. doi: 10.1007/BF02647211
  • G.G. Garrett and J.F. Knott, The influence of compositional and microstructural variations on the mechanism of static fracture in aluminum alloys, Metall. Trans. A 9 (1978), pp. 1187–1201. doi: 10.1007/BF02652242
  • D.E. Osborne and J.D. Embury, The influence of warm rolling on the fracture toughness of bainitic steels, Metall. Trans. 4 (1973), pp. 2051–2061. doi: 10.1007/BF02643267
  • W.H. Tai, Approximate calculation of fracture ductility and fracture toughness of ductile metals, Mater. Sci. Eng. A 122 (1989), pp. 205–210. doi: 10.1016/0921-5093(89)90631-X
  • M.P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components, Springer, London, 2012.
  • H. Trinkhaus and H. Ullmaier, A model for the high-temperature embrittlement of metals containing helium, Philos. Mag. 39 (1979), pp. 563–580. doi: 10.1080/01418617908239292
  • W. Qin, N.A.P. Kiran Kumar, J.A. Szpunar, and J. Kozinski, Intergranular δ-hydride nucleation and orientation in zirconium alloys, Acta Mater. 59 (2011), pp. 7010–7021. doi: 10.1016/j.actamat.2011.07.054
  • L.C. Lim and T. Watanabe, Grain boundary character distribution controlled toughness of polycrystals - A two-dimensional model, Scripta Metall. 23 (1989), pp. 489–494. doi: 10.1016/0036-9748(89)90438-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.