650
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Exploring the origin of variant selection through martensite-austenite reconstruction

, , , , &
Pages 699-717 | Received 29 Aug 2018, Accepted 20 Nov 2018, Published online: 05 Dec 2018

References

  • J.S. Bowles and J.K. Mackenzie, The crystallography of martensite transformations III. face-centred cubic to body-centred tetragonal transformations, Acta Metall. 2 (1954), pp. 224–234. doi: 10.1016/0001-6160(54)90163-7
  • M.S. Wechsler, D.S. Lieberman, and T.A. Read, On the theory of the formation of martensite, Trans. AIME 197 (1953), pp. 1503–1515.
  • C.M. Wayman, The phenomenological theory of martensite crystallography: inter relationships, Metall. Mater. Trans. A 25A (1994), pp. 1787–1795. doi: 10.1007/BF02649029
  • H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Steels, 4th ed., Elsevier, Butterworth-Heinemann, 2017, pp. 135–176.
  • G. Krauss, Steels: Processing, Structure and Performance, 1st ed., ASM International, Materials Park, OH, 2005, pp. 55–86.
  • S. Kundu, A.K. Verma, and V. Sharma. Quantitative analysis of variant selection for displacive transformations under stress, Metall. Mater. Trans. A 43A (2012), pp. 2552–2565. doi: 10.1007/s11661-011-0971-x
  • J.R. Patel and M. Cohen, Criterion for the action of applied stress in the martensitic transformation, Acta Metall. 1 (1953), pp. 531–538. doi: 10.1016/0001-6160(53)90083-2
  • S. Kundu, K. Hase, and H.K.D.H. Bhadeshia, Crystallographic texture of stress-affected bainite, Proc. R. Soc. Lond.A 463A (2007), pp. 2309–2328. doi: 10.1098/rspa.2007.1881
  • S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Mater. 51 (2003), pp. 1789–1799. doi: 10.1016/S1359-6454(02)00577-3
  • S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, The morphology and crystallography of lath martensite in alloy steels, Acta Mater. 54 (2006), pp. 5323–5331. doi: 10.1016/j.actamat.2006.07.009
  • H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Mater. 54 (2006), pp.1279–1288. doi: 10.1016/j.actamat.2005.11.001
  • J.C. Bokros and E.R. Parker, The mechanism of martensite burst transformation in Fe- Ni single crystals, Acta Metall. 11 (1963), pp. 1291–1301. doi: 10.1016/0001-6160(63)90024-5
  • R.M. Bateman and G.J. Davies, The influence of variant selection in the inheritance of texture during phase transformations, Proceedings of 6th international conference texture of materials, ISIJ, Tokyo, 1981, pp. 690–702.
  • Y. Higo, F. Lecroisey, and T. Mori, Relation between applied stress and orientation relationship of and orientation relationship of α′ martensite in stainless steel single crystals, Acta Metall. 22 (1974), pp. 3213–3223. doi: 10.1016/0001-6160(74)90170-9
  • E. Furubayashi, H. Miyaji, and M. Nobuki. A simple model of predicting transformation textures in thermomechanically processed steels, Trans. Iron Steel Inst. Jpn. 27 (1987), pp. 513–519. doi: 10.2355/isijinternational1966.27.513
  • A. Mangal, P. Biswas, S. Lenka, V. Singh, S.B. Singh, and S. Kundu, Dilatometric and microstructural response of variant selection during α’ transformation, Mater. Sci. Technol. 30 (2014), pp. 1117–1124. doi: 10.1179/1743284713Y.0000000487
  • N.J. Wittridge, J.J. Jonas, and J.H. Root, A dislocation-based model for variant selection during the γ-to-α transformation, Metall. Mater. Trans. A. 32 A (2001), pp. 889–901. doi: 10.1007/s11661-001-0346-9
  • V. Pancholi, M. Krishnan, I.S. Samajdar, V. Yadav, and N.B. Ballal, Self-accommodation in the bainitic microstructure of ultra-high-strength steel, Acta Mater. 56 (2008), pp. 2037–2050. doi: 10.1016/j.actamat.2007.12.057
  • Y. He, S. Godet, and J.J. Jonas, Representation of misorientations in Rodrigues–Frank space: application to the Bain, Kurdjumov–Sachs, Nishiyama–Wassermann and Pitsch orientation relationships in the Gibeon meteorite, Acta Mater. 53 (2005), pp. 1179–1190. doi: 10.1016/j.actamat.2004.11.021
  • Y. He, S. Godet, P.J. Jacques, and J.J. Jonas, Crystallographic relations between face- and body- centred cubic crystals formed under near-equilibrium conditions: observations from the Gibeon meteorite, Acta Mater. 54 (2006), pp. 1323–1334. doi: 10.1016/j.actamat.2005.11.008
  • M. Humbert, F. Wagner F., H. Moustahfid, and C. Esling, Determination of the orientation of a parent β grain from the orientations of the Inherited α Plates in the phase transformation from body-centred Cubic to hexagonal close Packed, J. Appl. Cryst. 28 (1995), pp. 571–576. doi: 10.1107/S0021889895004067
  • K.V. Mani Krishna, P. Tripathi, V.D. Hiwarkar, P. Pant, I. Samajdar, D. Srivastava, and G. K. Dey. Automated reconstruction of pre-transformation microstructures in zirconium, Scr. Mater. 62 (2010), pp. 391–394. doi: 10.1016/j.scriptamat.2009.11.031
  • M. Humbert and N. Gey, The calculation of a parent grain orientation from inherited variants for approximate (b.c.c.-h.c.p.) orientation relations, J. Appl. Cryst. 35 (2002), pp. 401–405. doi: 10.1107/S0021889802005824
  • L. Germaine, N. Gey, and M. Humbert, Reliability of reconstructed β-orientation maps in titanium alloys, Ultramicroscopy 107 (2007), pp. 1129–1135. doi: 10.1016/j.ultramic.2007.01.012
  • M. Abbasi, T. W. Nelson, C.D. Sorensen, and L. Wei, An approach to prior austenite reconstruction, Mater. Charact. 66 (2012), pp. 1–8. doi: 10.1016/j.matchar.2012.01.010
  • M. Abbasi, T.W. Nelson, and C.D. Sorensen, Analysis of variant selection in friction-stir processed high-strength low-alloy steels, J. Appl. Cryst. 46 (2013), pp. 716–725. doi: 10.1107/S0021889813008522
  • M. Abbasi, D.Y. Kim, T.W. Nelson, and M. Abbasi, EBSD and reconstruction of pre-transformation microstructures, examples and complexities in steels, Mater. Charact. 95 (2014), pp. 219–221. doi: 10.1016/j.matchar.2014.06.023
  • L. Germain, N. Gey, R. Mercier, P. Blaineau, and M. Humbert, An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations: application to steel, Acta Mater. 60 (2012), pp. 4551–4562. doi: 10.1016/j.actamat.2012.04.034
  • V. Tari, A.D. Rollett, and H. Beladi, Back calculation of parent austenite orientation using a clustering approach, J. Appl. Cryst. 46 (2013), pp. 210–215. doi: 10.1107/S002188981204914X
  • G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, Reconstruction of parent austenite grain structure based on crystal orientation Map of Bainite with and without Ausforming, ISIJ Int. 51 (2011), pp. 1174–1178. doi: 10.2355/isijinternational.51.1174
  • G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite, Acta Mater. 58 (2010), pp. 6393–6403. doi: 10.1016/j.actamat.2010.08.001
  • N. Bernier, L. Bracke, L. Malet, and S. Godet, An alternative to the crystallographic reconstruction of austenite in steels, Mater. Charact. 89 (2014) pp. 23–32. doi: 10.1016/j.matchar.2013.12.014
  • S.I. Wright and B. L. Adams Automatic analysis of electron backscatter diffraction patterns, Met. Trans. A. 23A (1992), pp. 759–767. doi: 10.1007/BF02675553
  • R.D. Doherty, I. Samajdar, and K. Kunze, Orientation imaging microscopy: application to the study of cube recrystallization texture in aluminum, Scr. Metall. Mater. 27 (1992), pp. 1459–1464. doi: 10.1016/0956-716X(92)90128-2
  • E.C. Bain, The nature of martensite, Trans. AIME 70 (1924), pp. 25–46.
  • G. Kurdjumov and G. Sachs, Over the mechanisms of steel hardening, Z. Phys. 64 (1930), pp. 325–343. doi: 10.1007/BF01397346
  • Z. Nishiyama. X-Ray Investigation of the mechanism of transformation from face-centred-cubic lattice to body-centred cubic, Sci. Rep. Inst. 23 (1934), pp. 637–644.
  • G. Wassermann, Influence of the α-γ-transformation of an irreversible Ni steel onto crystal orientation and tensile strength, Arch. Eisenhüttenwes. 16 (1933), pp. 647–651.
  • W. Pitsch, The orientation relationship between cementite and austenite, Acta Metall. 10 (1962), pp. 897–900. doi: 10.1016/0001-6160(62)90108-6
  • A.B. Greninger and A.R. Troiano, Crystallography of austenite decomposition, Trans. AIME 140 (1940), pp. 307–331.
  • S.I. Wright, Random thoughts on non-random misorientation distributions, Mater. Sci. Technol. 22 (2006), pp. 1287–1296. doi: 10.1179/174328406X130876
  • P. Van Houtte, S. Li, M. Seefeldt, and L. Delannay, Deformation texture prediction: from the Taylor model to the advanced Lamel model, Int. J. Plasticity 21 (2005), pp. 589–624. doi: 10.1016/j.ijplas.2004.04.011
  • S. Kundu, Transformation strain and crystallographic texture in steels, PhD diss., Cambridge University, 2007, pp. 186–199.
  • S. Kundu and H.K.D.H. Bhadeshia, Transformation texture in deformed stainless steel, Scr. Mater. 55 (2006), pp. 779–781. doi: 10.1016/j.scriptamat.2006.07.021
  • A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R.D. Doherty, and I. Samajdar, Defining a relationship between pearlite morphology and ferrite crystallographic orientation, Acta Mater. 129 (2017), pp. 278–289. doi: 10.1016/j.actamat.2017.02.008
  • H.K.D.H. Bhadeshia, Geometry of Crystals, 2nd ed., The Institute of Metals, London, 2006, pp. 51–69.
  • K.D. Woo, Variant selection of Allotriomorphic Ferrite in Steels, PhD diss., Pohang University of Science and technology, 2011, pp. 10–86.
  • G. Bruckner and G. Gottstein, Transformation textures during Diffusional α→γ→α phase Transformations in Ferritic Steels, ISIJ Int. 41 (2001). pp. 468–477. doi: 10.2355/isijinternational.41.468
  • A.J. Wilkinson, G. Meaden, and D.J. Dingley, High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity, Ultramicroscopy 106 (2006), pp. 307–313. doi: 10.1016/j.ultramic.2005.10.001
  • A. Lambert-Perlade, A.F. Gourgues, and A. Pineau. Austenite to bainite phase transformation in the heat- affected zone of a high strength low alloy steel, Acta Mater. 52 (2004), pp. 2337–2348. doi: 10.1016/j.actamat.2004.01.025
  • J.C. Fisher, Application of nucleation theory to isothermal martensite, Acta Metall. 1 (1953), pp. 32–35. doi: 10.1016/0001-6160(53)90007-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.