180
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Characterisation of atomic-scale defects in ODS ferritic alloys by positron annihilation

ORCID Icon & ORCID Icon
Pages 887-904 | Received 18 Jun 2018, Accepted 20 Dec 2018, Published online: 05 Jan 2019

References

  • S. Ukai and M. Fujiwara, Perspective of ODS alloys application in nuclear environments, J. Nucl. Mater. 307–311 (2002), pp. 749–757. doi: 10.1016/S0022-3115(02)01043-7
  • L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, and R.E. Stoller, Materials need for fusion, generation IV fission reactors and spallation neutron sources – similarities and differences, J. Nucl. Mater. 329–333 (2004), pp. 166–172. doi: 10.1016/j.jnucmat.2004.04.016
  • G.R. Odette, M.J. Alinger, and B.D. Wirth, Recent developments in irradiation-resistant steels, Annu. Rev. Mater. Res. 38 (2008), pp. 471–503. doi: 10.1146/annurev.matsci.38.060407.130315
  • X.L. Wanga, C.T. Liub, U. Keiderlingd, A.D. Stoicaa, L. Yanga, M.K. Millerb, C.L. Fub, D. Maa, and K. An, Unusual thermal stability of nano-structured ferritic alloys J. Alloys Compd. 529 (2012), pp. 96–101. doi: 10.1016/j.jallcom.2012.02.143
  • T. Hayashi, P.M. Sarosi, J.H. Schneibel, and M.J. Mills, Creep response and deformation processes in nanocluster-strengthened ferritic steel, Acta Mater. 56 (2008), pp. 1407–1416. doi: 10.1016/j.actamat.2007.11.038
  • J. He, F. Wana, K. Sridharan, T.R. Allen, A. Certain, V. Shutthanandan, and Y.Q. Wu, Stability of nanoclusters in 14YWT oxide dispersion strengthened steel under heavy ion-irradiation by atom probe tomography, J. Nucl. Mater. 455 (2014), pp. 41–45. doi: 10.1016/j.jnucmat.2014.03.024
  • J.P. Wharry, M.J. Swenson, and K.H. Yano, A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe–Cr system: current understanding and future directions, J. Nucl. Mater. 486 (2017), pp. 11–20. doi: 10.1016/j.jnucmat.2017.01.009
  • M. Brocq, B. Radiguet, J.-M. Le Breton, F. Cuvilly, P. Pareige, and F. Legendre, Nanoscale characterisation and clustering mechanism in a Fe-Y2O3 model ODS alloy processed by reactive ball milling and annealing, Acta Mater. 58 (2010), pp. 1806–1814. doi: 10.1016/j.actamat.2009.11.022
  • C.L. Fu, M. Krčmar, G.S. Painter, and X.Q. Chen, Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe, Phys. Rev. Lett. 99 (2007), pp. 225502-1–225502-4.
  • M.J. Alinger, G.R. Odette, and D.T. Hoelzer, On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys, Acta Mater. 57 (2009), pp. 392–406. doi: 10.1016/j.actamat.2008.09.025
  • R.W. Siegel, Positron annihilation spectroscopy, Annu. Rev. Mater. Sci. 10 (1980), pp. 393–425. doi: 10.1146/annurev.ms.10.080180.002141
  • M.J. Puska and R.M. Nieminen, Theory of positrons in solids and on solid surfaces, Rev. Mod. Phys. 66 (1994), pp. 841–897. doi: 10.1103/RevModPhys.66.841
  • J. Xu, C.T. Liu, M.K. Miller, and H.M. Chen, Nanocluster-associated vacancies in nanocluster strengthened ferritic steel as seen via positron-lifetime spectroscopy, Phys. Rev. B 79 (2009), p. 020204. doi: 10.1103/PhysRevB.79.020204
  • P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, and K.G. Lynn, Increased elemental specificity of positron annihilation spectra, Phys. Rev. Lett. 77 (1996), pp. 2097–2100. doi: 10.1103/PhysRevLett.77.2097
  • V. Grafutin, O. Ilyukhina, V. Krsjak, R. Burcl, P. Hahner, D. Erak, and A. Zeman, Study of PRIMAVERA steel samples by a positron annihilation spectroscopy technique, J. Nucl. Mater. 406 (2010), pp. 257–262. doi: 10.1016/j.jnucmat.2010.08.046
  • D.T. Hoelzer, K.A. Unocic, M.A. Sokolov, and T.S. Byun. Influence of processing on the microstructure and mechanical properties of 14YWT, J. Nucl. Mater. 471 (2016), pp. 251–265. doi: 10.1016/j.jnucmat.2015.12.011
  • B.N. Goshchitskii, V.V. Sagaradze, V.I. Shalaev, V.L. Arbuzov, Y. Tian, W. Qun, and S. Jiguang, Structure, radiation resistance and thermal creep of ODS ferritic steels, J. Nucl. Mater. 307-311 (2002), pp. 783–787. doi: 10.1016/S0022-3115(02)01047-4
  • V.V. Sagaradze, V.I. Shalaev, V.L. Arbuzov, B.N. Goshchitskii, Y. Tian, W. Qun, and S. Jiguang, Radiation resistance and thermal creep of ODS ferritic steels, J. Nucl. Mater. 295 (2001), pp. 265–272. doi: 10.1016/S0022-3115(01)00511-6
  • A.A. Nikitina, V.S. Ageev, A.P. Chukanov, V.V. Tsvelev, N.P. Porezanov, and O.A. Kruglov, R&D of ferritic–martensitic steel EP450 ODS for fuel pin claddings of prospective fast reactors, J. Nucl. Mater. 428 (2012), pp. 117–124. doi: 10.1016/j.jnucmat.2012.02.022
  • A. Zeman, L. Debarberis, J. Kocik, V. Slugen, and E. Keilova, Microstructural analysis of candidate steels pre-selected for new advanced reactor systems, J. Nucl. Mater. 362 (2007), pp. 259–267. doi: 10.1016/j.jnucmat.2007.01.068
  • L.C. Smedckjaer and M.J. Fluss, Experimental methods of positron annihilation for the study of defects in metals, Meth. Exp. Phys. 21 (1983), pp. 77–145. doi: 10.1016/S0076-695X(08)60065-4
  • A.P. Druzhkov, D.A. Perminov, and N.L. Pecherkina, Positron annihilation spectroscopy characterization of effect of intermetallic nanoparticles on accumulation and annealing of vacancy defects in electron-irradiated Fe–Ni–Al alloy, Philos. Mag. A 88 (2008), pp. 959–976. doi: 10.1080/14786430802014670
  • A.P. Druzhkov and A.L. Nikolaev, Effect of Si concentration on formation of vacancy complexes in electron-irradiated Fe16Cr–Si alloys studied by positron annihilation, J. Nucl. Mater. 508 (2018), pp. 100–106. doi: 10.1016/j.jnucmat.2018.05.040
  • Y. Nagai, K. Takadate, Z. Tang, H. Ohkubo, H. Sunaga, H. Takizawa, and M. Hasegawa, Positron annihilation study of vacancy-solute complex evolution in Fe-based alloys, Phys. Rev. B. 67 (2003), p. 224202. doi: 10.1103/PhysRevB.67.224202
  • A.P. Druzhkov and A.L. Nikolaev, Effects of solute atoms on evolution of vacancy defects in electron-irradiated Fe–Cr-based alloys, J. Nucl. Mater. 408 (2011), pp.194–200. doi: 10.1016/j.jnucmat.2010.11.036
  • U. Holzwarth and P. Schaaf, Nondestructive monitoring of fatigue damage evolution in austenitic stainless steel by positron-lifetime measurements, Phys. Rev. B 69 (2004), p. 094110. doi: 10.1103/PhysRevB.69.094110
  • M. Dade, J. Malaplate, J. Garnier, F. De Geuser, N. Lochet, and A. Deschamps, Influence of consolidation methods on the recrystallization kinetics of a Fe–14Cr based ODS steel, J. Nucl. Mater. 472 (2016), pp. 143–152. doi: 10.1016/j.jnucmat.2016.01.019
  • V. S. Ageev, N. F. Vil’danova, K.A. Kozlov, T.N. Kochetkova, A.A. Nikitina, V.V. Sagaradze, B.V. Safronov, V.V. Tsvelev, and A.P. Chukanov. Structure and thermal creep of the oxide-dispersion- strengthened EP-450 reactor steel, Rus. Phys. Met. Metallogr. 106 (2008), pp. 318–325. doi: 10.1134/S0031918X08090123
  • M.K. Miller, K.F. Russell, and D.T. Hoelzer, Characterization of precipitates in MA/ODS ferritic alloys, J. Nucl. Mater., 351 (2006), pp. 261–268. doi: 10.1016/j.jnucmat.2006.02.004
  • M.A. van Huis, A. van Veen, H. Schut, C.V. Falub, S.W.H. Eijt, P.E. Mijnarends, and J. Kuriplach, Positron confinement in embedded lithium nanoclusters, Phys. Rev. B 65 (2002), p. 084416. doi: 10.1103/PhysRevB.65.085416
  • M.J. Alinger, S.C. Glade, B.D. Wirth, G.R. Odette, T. Toyama, Y. Nagai, and M. Hasegawa, Positron annihilation characterization of nanostructured ferritic alloys, Mater. Sci. Eng. A 548 (2009), pp. 150–157. doi: 10.1016/j.msea.2009.04.040
  • M. Alatalo, B. Barbiellini, M. Hakala, H. Kauppinen, T. Korhonen, M.J. Puska, K. Saarinen, P. Hautojarvi, and R.M. Nieminen, Theoretical and experimental study of positron annihilation with core electrons in solids, Phys. Rev. B 54 (1996), pp. 2397–2409. doi: 10.1103/PhysRevB.54.2397
  • A. Hirata, T. Fujita, C.T. Liu, and M.W. Chen, Characterization of oxide nanoprecipitates in oxide dispersion strengthened 14YWT steel using aberration-corrected STEM, Acta Mater. 60 (2012), pp. 5686–5696. doi: 10.1016/j.actamat.2012.06.042

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.