190
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Dissociation of ⟨111⟩ dislocations on {11¯0} in pentaerythritol tetranitrate

, , &
Pages 1079-1089 | Received 03 Dec 2018, Accepted 12 Jan 2019, Published online: 07 Feb 2019

References

  • J.W. Conant, H.H. Cady, R.R. Ryan, et al. The atom positions of pentaerythritol tetranitrate (PETN) by x-ray and by neutron diffraction. Tech. Rep. LA-7756-MS, Los Alamos Scientific Laboratory, 1979.
  • F.P. Bowden, Y.D. Yoffe, Initiation and Growth of Explosion in Liquids and Solids, Cambridge University Press, Cambridge, 1952.
  • W. Fickett, W.C. Davis, Detonation, University of California Press, Berkeley and Los Angeles, 1979.
  • J.J. Dick, Effect of crystal orientation on shock initiation sensitivity of pentaerythritol tetranitrate explosive, Appl. Phys. Lett. 44 (1984), pp. 859. doi: 10.1063/1.94951
  • J.J. Dick, R.N. Mulford, W.J. Spencer, D.R. Pettit, E. Garcia and D.C. Shaw, Shock response of pentaerythritol tetranitrate single crystals, J. Appl. Phys. 70 (1991), pp. 3572. doi: 10.1063/1.349253
  • J.J. Dick and J.P. Ritchie, Molecular mechanics modeling of shear and the crystal orientation dependence of the elastic precursor shock strength in pentaerythritol tetranitrate, J. Appl. Phys. 76 (1994), pp. 2726. doi: 10.1063/1.357576
  • J.J. Dick, Anomalous shock initiation of detonation in pentaerythritol tetranitrate crystals, J. Appl. Phys. 81 (1997), pp. 601. doi: 10.1063/1.364201
  • C.S. Yoo, N.C. Holmes, P.C. Souers, C.J. Wu, F.H. Ree and J.J. Dick, Anisotropic shock sensitivity and detonation temperature of pentaerythritol tetranitrate single crystal, J. Appl. Phys. 88 (2000), pp. 70. doi: 10.1063/1.373626
  • M.J. Cawkwell, T.D. Sewell, L.Q. Zheng, Shock-induced shear bands in an energetic molecular crystal: Application of shock-front absorbing boundary conditions to molecular dynamics simulations. Phys. Rev. B 78 (2008), pp. 014107. doi: 10.1103/PhysRevB.78.014107
  • P.J. Halfpenny, K.J. Roberts, J.N. Sherwood, Dislocations in energetic materials. 2. characterization of the growth-induced dislocation structure of pentaerythritol tetranitrate (PETN). J. Appl. Cryst. 17 (1984), pp. 320. doi: 10.1107/S0021889884011572
  • P.J. Halfpenny, K.J. Roberts and J.N. Sherwood, Dislocations in energetic materials. part 3. etching and microhardness studies of pentaeythritol tetranitrate and cyclotrimethylene trinitramine, J. Mater. Sci. 19 (1984), pp. 1629. doi: 10.1007/BF00563061
  • H.G. Gallagher, P.J. Halfpenny, J.C. Miller, Dislocation slip systems in pentaerythritol tetranitrate (PETN) and cyclotrimethylene trinitramine (RDX). Phil. Trans. R. Roc. Lond. A 339 (1992), pp. 293. doi: 10.1098/rsta.1992.0036
  • R.M. Eason and T.D. Sewell, Shock-induced inelastic deformation in oriented crystalline pentaerythritol tetranitrate, J. Phys. Chem. C 116 (2012), pp. 2226. doi: 10.1021/jp206826d
  • V. Vitek, Intrinsic stacking faults in body-centered cubic metals, Philos. Mag. 18 (1968), pp. 773. doi: 10.1080/14786436808227500
  • J.W. Christian and V. Vitek, Dislocations and stacking faults, Rep. Prog. Phys. 33 (1970), pp. 307. doi: 10.1088/0034-4885/33/1/307
  • V. Vitek, Structure of dislocation cores in metallic materials and its impact on their plastic behavior, Prog. Mater. Sci. 36 (1992), pp. 1–27. doi: 10.1016/0079-6425(92)90003-P
  • S. Ramdas, J.M. Thomas and M.J. Goringe, Computational approach to the study of extended defects in molecular crystals. ii. structural changes at planar faults-their importance in facilitating photodimerization and in governing stacking fault energies, J. Chem. Soc.-Faraday Trans. II 73 (1977), pp. 551. doi: 10.1039/F29777300551
  • M.J. Cawkwell, K.J. Ramos, D.E. Hooks, Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading. J. Appl. Phys. 107 (2010), pp. 063512. doi: 10.1063/1.3305630
  • L.B. Munday, S.D. Solares, P.W. Chung, Generalized stacking fault energy surfaces in the molecular crystal alpha RDX. Philos. Mag. 92 (2012), pp. 3036. doi: 10.1080/14786435.2012.685191
  • N. Mathew, T.D. Sewell, Generalized stacking fault energies in the basal plane of triclinic molecular crystal 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Philos. Mag. 95 (2015), pp. 424. doi: 10.1080/14786435.2015.1006706
  • S. Grimme, J. Antony, T. Schwabe and C. Muck-Lichtenfeld, Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules, Org. Biomol. Chem. 5 (2007), pp. 741–758. doi: 10.1039/B615319B
  • D.C. Sorescu and B.M. Rice, Theoretical predictions of energetic molecular crystals at ambient and hydrostatic compression conditions using dispersion corrections to conventional density functionals (dft-d), J. Phys. Chem. C 114 (2010), pp. 6734–6748. doi: 10.1021/jp100379a
  • M.J. Cawkwell, D.S. Montgomery, K.J. Ramos and C.A. Bolme, Free energy based equation of state for pentaerythritol tetranitrate, J. Phys. Chem. A 238 (2017), pp. 238–243. doi: 10.1021/acs.jpca.6b09284
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865. doi: 10.1103/PhysRevLett.77.3865
  • S. Goedecker, M. Teter and J. Hutter, Seperable dual-space gaussian pseudopotentials, Phys. Rev. B 54 (1996), pp. 1703. doi: 10.1103/PhysRevB.54.1703
  • S. Grimme, S. Ehrlich and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32 (2011), pp. 1456–1465. doi: 10.1002/jcc.21759
  • J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach, Computer Phys. Commun. 167 (2005), pp. 103. doi: 10.1016/j.cpc.2004.12.014
  • J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., Kreiger, FL1982
  • R.D. Heidenreich and W. Shockley, in Rep. Conf. on Strength of Solids. The Physical Society: London, 1948, p. 57
  • W.T. Read, Dislocations in Crystals, McGraw-Hill, New York, 1953.
  • D.J.H. Cockayne, I.L.F. Ray and M.J. Whelan, Investigations of dislocation strain fields using weak beams, Philos. Mag. 20 (1969), pp. 1265. doi: 10.1080/14786436908228210
  • T.J. Balk and K.J. Hemker, High resolution transmission electron microscopy of dislocation core dissociations in gold and iridium, Philos. Mag. A 81 (2001), pp. 1507. doi: 10.1080/01418610108214360
  • D.M. Barnett and L.A. Swanger, Elastic energy of a straight dislocation in an infinite anisotropic elastic medium, Phys. Stat. Sol. (b) 48 (1971), pp. 419. doi: 10.1002/pssb.2220480141
  • M.O. Peach and J.S. Koehler, The forces exerted on dislocations and the stress fields produced by them, Phys. Rev. 80 (1950), pp. 436. doi: 10.1103/PhysRev.80.436
  • B. Sun, J.M. Winey, N. Hemmi, Second-order elastic constants of pentaerythritol tetranitrate and cyclotrimethylene trinitramine using impulsive stimulated thermal scattering. J. Appl. Phys. 104 (2008), pp. 073517. doi: 10.1063/1.2981044
  • M.J. Cawkwell, D. Nguyen-Manh, D.G. Pettifor, Construction, assessment, and application of a bond-order potential for iridium. Phys. Rev. B 73 (2006), pp. 064104. doi: 10.1103/PhysRevB.73.064104
  • J. Bonneville and B. Escaig, Cross-slipping process and the stress-orientation dependence in pure copper, Acta. Metall. 27 (1979), pp. 1477. doi: 10.1016/0001-6160(79)90170-6
  • V. Vitek, in Dislocations and properties of real materials : Proceedings of the Conference to celebrate the fiftieth anniversary of the concept of dislocation in crystals, M.H. Loretto, ed. Institute of Metals, London, 1985, p. 30
  • L.B. Munday, R.L. Mitchell, J. Knap, Role of molecule flexibility of the nucleation of dislocations in molecular crystals. Appl. Phys. Lett. 103 (2013), pp. 151911. doi: 10.1063/1.4824711
  • I.A. Olson, A.G. Shtukenberg, B. Kahr, Dislocations in molecular crystals. Rep. Prog. Phys. 81 (2018), pp. 096501. doi: 10.1088/1361-6633/aac303

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.