232
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Cohesive zone modelling of anodic dissolution stress corrosion cracking induced by corrosion product films

ORCID Icon, , , & ORCID Icon
Pages 1090-1102 | Received 26 Aug 2018, Accepted 21 Jan 2019, Published online: 06 Feb 2019

References

  • M. Kermani and J.C. Scully, The effect of strain-rate upon stress corrosion crack velocity in (-brass in ammoniacal solutions, Corros. Sci. 19 (1979), pp. 89–95. 97–110. doi: 10.1016/0010-938X(79)90043-X
  • A.J. Forty and P. Humble, The influence of surface tarnish on the stress corrosion of α-brass, Philos. Mag. 8 (1963), pp. 247–264. doi: 10.1080/14786436308211122
  • R.C. Newman, T. Shahrabi and K. Sieradzki, Film-induced cleavage of alpha-brass, Scripta Metall. 23 (1989), pp. 71–74. doi: 10.1016/0036-9748(89)90095-1
  • C. Zhang, Y.J. Su, L.J. Qiao and W.Y. Chu, Study on the role of tarnishing film in stress-corrosion cracking of brass in Mattsson’s solution, J. Mater. Res. 25 (2010), pp. 991–998. doi: 10.1557/JMR.2010.0120
  • X.S. Du, Y.J. Su, C. Zhang, J.X. Li, L.J. Qiao, W.Y. Chu, W.G. Chen, Q.S. Zhang and D.X. Liu, Pre-strain enhances film rupture to promote SCC of brass in Mattsson’s solution-A proposal for a film-rupture-induced SCC mechanism, Corros. Sci. 69 (2013), pp. 302–310. doi: 10.1016/j.corsci.2012.11.043
  • M.G. Alvarez, P. Lapitz, S.A. Fernández and J.R. Galvele, Passivity breakdown and stress corrosion cracking of α-brass in sodium nitrite solutions, Corros. Sci. 47 (2005), pp. 1643–1652. doi: 10.1016/j.corsci.2004.08.020
  • X.S. Du, Y.J. Su, J.X. Li, L.J. Qiao and W.Y. Chu, Inhibitive effects and mechanism of phosphates on the stress corrosion cracking of brass in ammonia solutions, Corros. Sci. 60 (2012), pp. 69–75. doi: 10.1016/j.corsci.2012.04.011
  • X.J. Guo, K.W. Gao, L.J. Qiao and W.Y. Chu, The correspondence between susceptibility to SCC of brass and corrosion-induced tensile stress with various pH values, Corros. Sci. 44 (2002), pp. 2367–2378. doi: 10.1016/S0010-938X(02)00055-0
  • X.Z. Guo, K.W. Gao, W.Y. Chu and L.J. Qiao, Correlation between passive film-induced stress and stress corrosion cracking of α-Ti in a methanol solution at various potentials, Mater. Sci. Eng. A. 346 (2003), pp. 1–7. doi: 10.1016/S0921-5093(02)00529-4
  • X.Z. Guo, K.W. Gao, L.J. Qiao and W.Y. Chu, Stress corrosion cracking relation with dezincification layer-induced stress, Metall. Mater. Trans. A. 32 (2001), pp. 1309–1312. doi: 10.1007/s11661-001-0221-8
  • J.X. Li, W.Y. Chu, Y.B. Wang and L.J. Qiao, In situ TEM study of stress corrosion cracking of austenitic stainless steel, Corros. Sci. 45 (2003), pp. 1355–1365. doi: 10.1016/S0010-938X(02)00225-1
  • X.S. Du, Y.J. Su, J.X. Li, L.J. Qiao and W.Y. Chu, Stress corrosion cracking of A537 steel in simulated marine environments, Corros. Sci. 65 (2012), pp. 278–287. doi: 10.1016/j.corsci.2012.08.025
  • R. Nishimura, Characterization and perspective of stress corrosion cracking of austenitic stainless steels (type 304 and type 316) in acid solutions using constant load method, Corros. Sci. 49 (2007), pp. 81–91. doi: 10.1016/j.corsci.2006.05.011
  • H.B. Chew, Cohesive zone laws for fatigue crack growth: Numerical field projection of the micromechanical damage process in an elasto-plastic medium, Int. J. Solids. Struct. 51 (2014), pp. 1410–1420. doi: 10.1016/j.ijsolstr.2013.12.033
  • X. Chen, X.M. Deng, M.A. Sutton and P. Zavattieri, An inverse analysis of cohesive zone model parameter values for ductile crack growth simulations, Int. J. Mech. Sci. 79 (2014), pp. 206–215. doi: 10.1016/j.ijmecsci.2013.12.006
  • Y.J. Xu and H. Yuan, Applications of normal stress dominated cohesive zone models for mixed-mode crack simulation based on extended finite element methods, Eng. Fract. Mech. 78 (2011), pp. 544–558. doi: 10.1016/j.engfracmech.2010.03.029
  • J.H. Lee, Y.F. Gao, K.E. Johanns and G.M. Pharr, Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials, Acta Mater. 60 (2012), pp. 5448–5467. doi: 10.1016/j.actamat.2012.07.011
  • F. Moroni and A. Pirondi, A procedure for the simulation of fatigue crack growth in adhesively bonded joints based on a cohesive zone model and various mixed-mode propagation criteria, Eng. Fract. Mech. 89 (2012), pp. 129–138. doi: 10.1016/j.engfracmech.2012.04.003
  • B. Paliwal and M. Cherkaoui, An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth, Int. J. Solids. Struct. 50 (2013), pp. 3346–3360. doi: 10.1016/j.ijsolstr.2013.06.002
  • B. Yang, S. Mall and K. Ravi-Chandar, A cohesive zone model for fatigue crack growth in quasibrittle materials, Int. J. Solids. Struct. 38 (2001), pp. 3927–3944. doi: 10.1016/S0020-7683(00)00253-5
  • S. Serebrinsky, E.A. Carter and M. Ortiz, A quantum-mechanically informed continuum model of hydrogen embrittlement, J. Mech. Phys. Solids. 52 (2004), pp. 2403–2430. doi: 10.1016/j.jmps.2004.02.010
  • I. Scheider, M. Pfuff and W. Dietzel, Simulation of hydrogen assisted stress corrosion cracking using the cohesive model, Eng. Fract. Mech. 75 (2008), pp. 4283–4291. doi: 10.1016/j.engfracmech.2007.10.002
  • V. Olden, C. Thaulow, R. Johnsen and E. Østby, Cohesive zone modeling of hydrogen-induced stress cracking in 25% Cr duplex stainless steel, Scripta Mater. 57 (2007), pp. 615–618. doi: 10.1016/j.scriptamat.2007.06.006
  • A. Alvaro, V. Olden and O.M. Akselsen, 3D cohesive modeling of hydrogen embrittlement in the heat affected zone of an X70 pipeline steel, Int. J. Hydrogen Energy. 38 (2013), pp. 7539–7549. doi: 10.1016/j.ijhydene.2013.02.146
  • N.R. Raykar, S.K. Maiti and R.K. Singh Raman, Modelling of mode-I stable crack growth under hydrogen assisted stress corrosion cracking, Eng. Fract. Mech. 78 (2011), pp. 3153–3165. doi: 10.1016/j.engfracmech.2011.07.013
  • S. Guzmán, J.C. Gálvez and J.M. Sancho, Modelling of corrosion-induced cover cracking in reinforced concrete by an embedded cohesive crack finite element, Eng. Fract. Mech. 93 (2012), pp. 92–107. doi: 10.1016/j.engfracmech.2012.06.010
  • H.Y. Yu, J.S. Olsen, A. Alvaro, V. Olden, J.Y. He and Z.L. Zhang, A uniform hydrogen degradation law for high strength steels, Eng. Fract. Mech. 157 (2016), pp. 56–71. doi: 10.1016/j.engfracmech.2016.02.001
  • M. Pezzotta, Z.L. Zhang, M. Jensen, T. Grande and M.-A. Einarsrud, Cohesive zone modeling of grain boundary microcracking induced by thermal anisotropy in titanium diboride ceramics, Comp. Mater. Sci. 43 (2008), pp. 440–449. doi: 10.1016/j.commatsci.2007.12.011
  • M. Pezzotta and Z.L. Zhang, Effect of thermal mismatch induced residual stresses on grain boundary microcracking of titanium diboride ceramics, J. Mater. Sci. 45 (2010), pp. 382–391. doi: 10.1007/s10853-009-3952-3
  • M.S. Jensen, M. Pezzotta, Z.L. Zhang, M.-A. Einarsrud and T. Grande, Degradation of TiB2 ceramics in liquid aluminum, J. Eur. Ceram. Soc. 28 (2008), pp. 3155–3164. doi: 10.1016/j.jeurceramsoc.2008.05.011
  • X.B. Ren, Z.L. Zhang and B. Nyhus, Effect of residual stresses on the crack-tip constraint in a modified boundary layer model, Int. J. Solids Struct. 46 (2009), pp. 2629–2641. doi: 10.1016/j.ijsolstr.2009.02.009
  • X.B. Ren, Z.L. Zhang and B. Nyhus, Effect of residual stresses on ductile crack growth resistance, Eng. Fract. Mech. 77 (2010), pp. 1325–1337. doi: 10.1016/j.engfracmech.2010.03.007
  • W.J. Yuan, Z.L. Zhang, Y.J. Su, L.J. Qiao and W.Y. Chu, A novel method to measure the residual stress in a corrosion film formed on metallic substrates, Corros. Sci. 68 (2013), pp. 128–133. doi: 10.1016/j.corsci.2012.11.004
  • V. Tvergaard and J.W. Hutchinson, The relation between crack growth resistance and fracture process parameters in elastic-plastic solids, J. Mech. Phys. Solids 40 (1992), pp. 1377–1397. doi: 10.1016/0022-5096(92)90020-3
  • E.W. Qin, L. Lu, N.R. Tao, J. Tan and K. Lu, Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles, Acta. Mater. 57 (2009), pp. 6215–6225. doi: 10.1016/j.actamat.2009.08.048
  • Y.F. Gao and A.F. Brower, A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces, Modell. Simul. Mater. Sci. Eng. 12 (2004), pp. 453–463. doi: 10.1088/0965-0393/12/3/007
  • W.W. Wang, Z.L. Zhang, X.C. Ren, Y.J. Guan and Y.J. Su, Corrosion product film-induced stress facilitates stress corrosion cracking, Sci. Rep. 5 (2015), pp. 10579. doi: 10.1038/srep10579

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.