400
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructural evolution and phase transformation in the liquid-solid Al/Ni diffusion couple

, , , , , , & show all
Pages 1103-1120 | Received 17 Oct 2018, Accepted 22 Jan 2019, Published online: 04 Feb 2019

References

  • D.B. Miracle, The physical and mechanical properties of NiAl. Acta Metall. Mater. 41 (1993), pp. 649–684. doi: 10.1016/0956-7151(93)90001-9
  • D.R. Clarke and C.G. Levi, Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res. 33 (2003), pp. 383–417. doi: 10.1146/annurev.matsci.33.011403.113718
  • J.H. Wood and E.H. Goldman, High-temperature materials for aerospace and industrial power, in Superalloys II, C.T. Sims, N.S. Stoloff, W.C. Hagel, eds., John Wiley & Sons Inc., New York, 1987. pp. 359–384.
  • B. Gleeson, Thermal barrier coatings for aeroengine applications. J. Propul. Power 22 (2006), pp. 375–383. doi: 10.2514/1.20734
  • B. Bouchaud, J. Balmain and F. Pedraza, Cyclic and isothermal oxidation at 1100°C of a CVD aluminised directionally solidified Ni superalloy. Oxid. Met. 69 (2008), pp. 193–210. doi: 10.1007/s11085-008-9092-3
  • M.W. Chen, M.L. Glynn, R.T. Ott, T.C. Hufnagel and K.J. Hemker, Characterization and modeling of a martensitic transformation in a platinum modified diffusion aluminide bond coat for thermal barrier coatings. Acta Mater. 51 (2003), pp. 4279–4294. doi: 10.1016/S1359-6454(03)00255-6
  • S. Rosen and J.A. Goebel, The crystal structure of nickel-rich NiAl and martensitic NiAl. Trans. Met. Soc. AIME 242 (1968), pp. 722–724.
  • J.L. Smialek, Martensite in NiAl oxidation-resistant coatings. Metall. Trans. 2 (1971), pp. 913–915. doi: 10.1007/BF02662758
  • E.G. Lesnikova and V.P. Lesnikov, Influence of instability of the β-phase of the aluminide coating on the condition and scale resistance of the surface layer of Ni-Al alloys. Met. Sci. Heat Treat. 28 (1986), pp. 372–376. doi: 10.1007/BF00814696
  • Y. Zhang, J.A. Haynes and B.A. Pint, Martensitic transformation in CVD NiAl and (Ni, Pt) Al bond coatings. Surf. Coat. Technol. 163-164 (2003), pp. 19–24. doi: 10.1016/S0257-8972(02)00585-6
  • V.K. Tolpygo and D.R. Clarke, Surface rumpling of a (Ni,Pt) Al bond coat induced by cyclic oxidation. Acta Mater. 48 (2000), pp. 3283–3293. doi: 10.1016/S1359-6454(00)00156-7
  • X. Tan, C. Perrin-Pellegrino and K. Hoummada, Atom probe tomographic study of L10 martensite in a Pt-modified NiCoCrAlYTa bond coating. Corros. Sci. 76 (2013), pp. 1–5. doi: 10.1016/j.corsci.2013.07.041
  • V.K. Tolpygo and D.R. Clarke, On the rumpling mechanism in nickel-aluminide coatings: Part II: characterization of surface undulations and bond coat swelling. Acta Mater. 52 (2004), pp. 5129–5141.
  • J.C. Zhao, Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships. Prog. Mater. Sci. 51 (2006), pp. 557–631. doi: 10.1016/j.pmatsci.2005.10.001
  • J.C. Zhao, A combinatorial approach for efficient mapping of phase diagrams and properties. J. Mater. Res. 16 (2001), pp. 1565–1578. doi: 10.1557/JMR.2001.0218
  • M. Watanabe, Z. Horita and M. Nemoto, Observations of diffusion-couple interfaces in Ni-Al system. Defect Diffusion Forum 143-147 (1997), pp. 637–642. doi: 10.4028/www.scientific.net/DDF.143-147.637
  • X.Y. Gong, Y. Ma, H.B. Guo, and S.K. Gong, Effect of thermal cycling on microstructure evolution and elements diffusion behavior near the interface of Ni/NiAl diffusion couple. J. Alloys Compd. 642 (2015), pp. 117–123. doi: 10.1016/j.jallcom.2015.04.095
  • M. Watanabe, Z. Horita and T. Sano, Electron microscopy study of Ni/Ni3Al diffusion couple interface - II. Diffusivity measurement. Acta Metall. Mater. 42 (1994), pp. 3389–3396. doi: 10.1016/0956-7151(94)90471-5
  • K. Fujiwara and Z. Horita, Measurement of intrinsic diffusion coefficients of Al and Ni in Ni3Al using Ni/NiAl diffusion couples. Acta Mater. 50 (2002), pp. 1571–1579. doi: 10.1016/S1359-6454(02)00018-6
  • W.D. MacDonald and T.W. Eagar, Transient liquid phase bonding. Anna. Rev. Mater. Sci. 22 (1992), pp. 23–46. doi: 10.1146/annurev.ms.22.080192.000323
  • A. Urrutia, S. Tumminello, S.F. Aricó and S. Sommadossi, Characterization of Al-Ni intermetallics around 30-60 at% Al for TLPB application. Calphad 44 (2014), pp. 108–113. doi: 10.1016/j.calphad.2013.08.004
  • G.A. López, S. Sommadossi and P. Zieba, Kinetic behavior of diffusion-soldered Ni/Al/Ni interconnections. Mater. Chem. Phys. 78 (2003), pp. 459–463. doi: 10.1016/S0254-0584(02)00232-8
  • S. Tumminello and S. Sommadossi, Growth kinetics of intermetallic phases in transient liquid phase bonding process (TLPB) in Al/Ni system. Defect Diffusion Forum 323-325 (2012), pp. 465–470. doi: 10.4028/www.scientific.net/DDF.323-325.465
  • A. Urrutia, S. Tumminello and D.G. Lamas, X-ray characterization of intermetallic phases in Al/Ni multilayer system. Procedia Mater. Sci. 8 (2015), pp. 1150–1159. doi: 10.1016/j.mspro.2015.04.179
  • F. Pedraza, M. Mollard and B. Rannou, Potential thermal barrier coating systems from Al microparticles. Mechanisms of coating formation on pure nickel. Mater. Chem. Phys. 134 (2012), pp. 700–705. doi: 10.1016/j.matchemphys.2012.03.053
  • M.C. Galetz, X. Montero, M. Mollard, M. Günthner, F. Pedraza and M. Schütze, The role of combustion synthesis in the formation of slurry aluminization. Intermetallics 44 (2014), pp. 8–17. doi: 10.1016/j.intermet.2013.08.002
  • R.M. Langford and C. Clinton, In situ lift-out using a FIB-SEM system. Micron 35 (2004), pp. 607–611. doi: 10.1016/j.micron.2004.03.002
  • S. Hayashi, S.I. Ford, D.J. Young, D.J. Sordelet, M.F. Besser and B. Gleeson, α-NiPt (Al) and phase equilibria in the Ni-Al-Pt system at 1150°C. Acta Mater. 53 (2005), pp. 3319–3328. doi: 10.1016/j.actamat.2005.03.046
  • T.B. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, OH, 1990.
  • S. Chakravorty and C.M. Wayman, The thermoelastic martensitic transformation in β′ Ni-Al alloys: I. crystallography and morphology. Metall. Trans. A 7 (1976), pp. 555–568. doi: 10.1007/BF02643970
  • K. Enami, S. Nenno and K. Shimizu, Crystal structure and internal twins of the Ni-36.8 at % Al martensite. Trans. Jap. Inst. Met. 14 (1973), pp. 161–165. doi: 10.2320/matertrans1960.14.161
  • B. Bouchaud, B. Rannou and F. Pedraza, Slurry aluminizing mechanisms of Ni-based superalloys incorporating an electrosynthesized ceria diffusion barrier. Mater. Chem. Phys. 143 (2013), pp. 416–424. doi: 10.1016/j.matchemphys.2013.09.022
  • G.A. López, S. Sommadossi, W. Gust, E.J. Mittemeijer and P. Zieba, Phase characterization of diffusion soldered Ni/Al/Ni interconnections. Interface Sci. 10 (2002), pp. 13–19. doi: 10.1023/A:1015172710411
  • S.V. Divinski, S. Frank, U. Södervvall and C. Herzig, Solute diffusion of Al-substituting elements in Ni3Al and the diffusion mechanism of the minority component. Acta Mater. 46 (1998), pp. 4369–4380. doi: 10.1016/S1359-6454(98)00109-8
  • N. Komai, M. Watanabe, Z. Horta, T. Sano and M. Nemoto, Analytical electron microscopy study of Ni/Ni-8 mol% Ti diffusion couples. Acta Mater. 46 (1998), pp. 4443–4451. doi: 10.1016/S1359-6454(98)00081-0
  • G.H. Cao, T.P. Ou and H. Jiang, Microstructure investigations of Pt-modified γ′-Ni3Al+γ-Ni coatings on Ni-based superalloys. J. Mater. Res. 25 (2010), pp. 1191–1195. doi: 10.1557/JMR.2010.0148
  • J.L. Smialek and R.F. Hehemann, Transformation temperatures of martensite in β-phase nickel aluminide. Metall. Mater. Trans. B 4 (1973), pp. 1571–1575.
  • S. Chakravorty and C.M. Wayman, The thermoelastic martensitic transformation in β′ Ni-Al alloys: II. electron microscopy. Metall. Trans. A 7 (1976), pp. 569–582. doi: 10.1007/BF02643971
  • K.C. Russell, Nucleation in solids: the induction and steady state effects. Adv. Colloid Interface Sci. 13 (1980), pp. 205–318. doi: 10.1016/0001-8686(80)80003-0
  • H. Wendt and P. Haasen, Nucleation and growth of γ′-precipitates in Ni-14 at.% Al. Acta Metall. 31 (1983), pp. 1649–1659. doi: 10.1016/0001-6160(83)90163-3
  • S. Khan, J.B. Singh and A. Verma, Precipitation behavior of γ′ phase in alloy 693. Mater. Charact. 119 (2016), pp. 24–33. doi: 10.1016/j.matchar.2016.07.007
  • T. Grosdidier, A. Hazotte and A. Simon, Precipitation and dissolution processes in γ/γ′ single crystal nickel-based superalloys. Mater. Sci. Eng. A 256 (1998), pp. 183–196. doi: 10.1016/S0921-5093(98)00795-3
  • S. Meher, S. Nag, J. Tiley, A. Goel and R. Banerjee, Coarsening kinetics of γ′ precipitates in cobalt-base alloys. Acta Mater. 61 (2013), pp. 4266–4276. doi: 10.1016/j.actamat.2013.03.052
  • R.J. Mitchell, M. Preuss, S. Tin and M.C. Hardy, The influence of cooling rate from temperatures above the γ′ solvus on morphology, mismatch and hardness in advanced polycrystalline nickel-base superalloys. Mater. Sci. Eng. A 473 (2008), pp. 158–165. doi: 10.1016/j.msea.2007.04.098
  • D. Mukherji, S. Piegert and J. Rösler, Morphology of γ’ precipitates in experimental W- and Re- containing Ni-base superalloys. Mater. Sci. Forum 426-432 (2003), pp. 815–820. doi: 10.4028/www.scientific.net/MSF.426-432.815
  • J.R. Groh, Effect of cooling rate from solution heat treatment on waspaloy microstructure and properties. Superalloys 1996 (1996), pp. 621–626.
  • A.J. Bradley and A. Taylor, An X-ray analysis of the nickel-aluminium system. Proc. R. Soc. Lond. A 159 (1937), pp. 56–72. doi: 10.1098/rspa.1937.0056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.