342
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Molecular dynamics study of bimetallic Fe–Cu Janus nanoparticles formation by electrical explosion of wires

ORCID Icon, , , , &
Pages 1121-1138 | Received 04 Jun 2018, Accepted 23 Jan 2019, Published online: 07 Feb 2019

References

  • G. Mikhaylov, U. Mikac, A.A. Magaeva, V.I. Itin, E.P. Naiden, I. Psakhye, L. Babes, T. Reinheckel, C. Peters, R. Zeiser, M. Bogyo, V. Turk, S.G. Psakhye and B. Turk, Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotech 6(9) (2011), pp. 594–602.
  • K. Shin, J.W. Choi, G. Ko, Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures. Nat. Commun 8 (2017), pp. 15807
  • N. Sanvicens and M.P. Marco, Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol. 26(8) (2008), pp. 425–433.
  • H.K. Sajja, M.P. East, H. Mao, Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr. Drug Discovery Technol. 6(1) (2009), pp. 43–51
  • C. Langlois, Z.L. Li, J. Yuanet al., Transition from core-shell to Janus chemical configuration for bimetallic nanoparticles. Nanoscale. 4 (2012), pp. 3381–3388
  • L. Piccolo, Z.Y. Li, I. Demiroglu, F. Moyon, Z. Konuspayeva, G. Berhault, P. Afanasiev, W. Lefebvre, J. Yuan and R.L. Johnston, Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts. Sci. Rep 6 (2016), pp. 35226.
  • A. Zaleska-Medynska, M. Marchelek, M. Diak and E. Grabowska, Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv. Colloid Interfac 229 (2016), pp. 80–107.
  • S.K. Mishra and S. Kannan, A bimetallic silver–neodymium Theranostic nanoparticle with Multimodal NIR/MRI/CT imaging and Combined Chemo-photothermal Therapy. Inorg. Chem 56(19) (2017), pp. 12054–12066.
  • S. Cai, X. Jia, Q. Han, X. Yan, R. Yang and C. Wang, Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 10(6) (2017), pp. 2056–2069.
  • F.D. Blum, A. Tokuhiro, M.F. Bertino and C.M. Doudna, Bimetallic Pt-Ag and Pd-Ag nanoparticles. J. Appl. Phys. 97 (2005), pp. 094304.
  • M. Chatzidakis, S. Prabhudev, P. Saidi, Bulk Immiscibility at the Edge of the Nanoscale. Acs Nano 11(11) (2017), pp. 10984–10991
  • G. Krishnan, M.A. Verheijen, G.H. ten Brink, G. Palasantzaс, B. J. Kooi, Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis, Nanoscale. 5(12) (2013) pp. 5375, DOI: 10.1039/c3nr00565h
  • E. Gutmanas, A. Rabinkin and M. Roitberg, Cold sintering under high pressure. Scripta Met 13 (1979), pp. 11–15.
  • M.I. Lerner, S.G. Psakhie, A.S. Lozhkomoev, Fe-Cu nanocomposites by high pressure consolidation of powders prepared by electric explosion of wires. Adv. Eng. Mater. 20(8) (2018), pp. 1701024
  • N.A. Luechinger, R.N. Grass, E.K. Athanassiou and W.J. Stark, Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem. Mater 22 (2010), pp. 155–160.
  • Y.H. Chen and C.S. Yeh, A new approach for the formation of alloy nanoparticles: laser synthesis of gold–silver alloy from gold–silver colloidal mixtures. Chem. Commun 4 (2001), pp. 371–372.
  • I. Srnová-Šloufová, F. Lednický, A. Gemperle and J. Gemperlová, Core−shell (Ag)Au bimetallic nanoparticles: analysis of transmission electron Microscopy images. Langmuir 16(25) (2000), pp. 9928–9935.
  • J.M. Slocik and R.R. Naik, Biologically programmed synthesis of bimetallic nanostructures. Adv. Mater 18(15) (2006), pp. 1988–1992.
  • H. Bönnemann and R.M. Richards, Nanoscopic metal particles − Synthetic methods and potential applications. Eur. J. Inorg. Chem 10 (2001), pp. 2455–2480.
  • N.S. Tabrizi, Q. Xu, N.M. van der Pers and A. Schmidt-Ott, Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J. Nanopart. Res 12 (2010), pp. 247–259.
  • P. Grammatikopoulos, S. Steinhauer, J. Vernieres, V. Singh and M. Sowwan, Nanoparticle design by gas-phase synthesis. Adv. Phys. X 1(1) (2016), pp. 81–100.
  • J. Bai, J.P. Wang, High-magnetic-moment core-shell-type FeCo–Au/ Ag nanoparticles. Appl. Phys. Lett. 87(15) (2005), pp. 152502
  • S. Pande, S.K. Ghosh, S. Praharaj, S. Panigrahi, S. Basu, S. Jana, A. Pal, T. Tsukuda and T. Pal, Synthesis of normal and Inverted Gold−silver core−shell Architectures in β-Cyclodextrin and their applications in SERS. J. Phys. Chem. C 111(29) (2007), pp. 10806–10813.
  • C.J. Serpell, J. Cookson, D. Ozkaya and P.D. Beer, Core-shell bimetallic nanoparticle synthesis via anion coordination. Nat. Chem 3(6) (2011), pp. 478–483.
  • R. Ferrando, J. Jellinek and R.L. Johnston, Nanoalloys: from Theory to applications of alloy clusters and nanoparticles. Chem. Rev 108(3) (2008), pp. 845–910.
  • H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater. 48(1) (2000), pp. 129.
  • R.B. Baksht, S.I. Tkachenko, V.M. Romanova, A.R. Mingaleev, V.I. Oreshkin, A.E. Ter-Oganes’yan, T.A. Khattatov, T.A. Shelkovenko and S.A. Pikuz, Stratification dynamics and the development of electrothermal instability at the wire explosion. Tech. Phys 58(8) (2013), pp. 1129–1137.
  • V.I. Oreshkin, K.V. Khishchenko, P.R. Levashov, Strata formation at fast electrical explosion of cylindrical conductors. High. Temp 50(5) (2012), pp. 584–595
  • T.K. Sindhu, R. Sarathi, S.R. Chakravarthy, Understanding nanoparticle formation by a wire explosion process through experimental and modelling studies. Nanotechnology 19(2) (2008), pp. 025703
  • M.I. Lerner, A.V. Pervikov, E.A. Glazkova, N.V. Svarovskaya, A.S. Lozhkomoev and S.G. Psakhie, Structures of binary metallic nanoparticles produced by electrical explosion of two wires from immiscible elements. Powder Technol. 288 (2016), pp. 371–378.
  • W.J. Liu, T.T. Qian and H. Jiang, Bimetallic Fe nanoparticles: recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chem. Eng. J 236 (2014), pp. 448–463.
  • O.C. Carneiro, M.S. Kim, J.B. Yim, N.M. Rodriguez and R.T.K. Baker, Growth of graphite nanofibers from the iron-copper catalyzed decomposition of CO/H2 mixtures. J. Phys. Chem. B 107 (2003), pp. 4237–4244.
  • K. Choi and W. Lee, Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II). J. Hazard. Mater 211-212 (2012), pp. 146–153.
  • A. Koutsospyros, J. Pavlov, J. Fawcett, D. Strickland, B. Smolinski and W. Braida, Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction. J. Hazard. Mater 219–220 (2012), pp. 75–81.
  • M.S. Daw and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12) (1984), pp. 6443–6453.
  • G. Bonny, R.C. Pasianot, N. Castin and L. Malerba, Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: first validation by simulated thermal annealing. Philos. Mag 89 (2009), pp. 3531–3546.
  • M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun and M. Asta, Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag 83(35) (2003), pp. 3977–3994.
  • Y. Mishin, M.J. Mehl, D.A. Papaconstantopouloset al., Structural stability and lattice defects in copper:Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63(22) (2001) DOI: 10.1103/physrevb.63.224106
  • R. Ferrando. Structure and Properties of Nanoalloys (Vol. 10). Elsevier (2016), 338 p.
  • S. Izrailev, S. Stepaniants, B. Isralewitz, D. Kosztin, H. Lu, F. Molnar, W. Wriggers and K. Schulten, Steered molecular dynamics computational molecular dynamics: Challenges, methods, ideas, in Lecture Notes in Computational Science and Engineering. vol. 4, Springer-Verlag, Berlin, 1998. pp. 39–65.
  • B. Izralewitz, M. Gao and K. Schulten, Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol 11 (2001), pp. 224–230.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys 117 (1995), pp. 1–19.
  • W. Humphrey, A. Dalke and K. Schulten, VMD: Visual molecular dynamics. J. Mol. Graph 14 (1996), pp. 33–38.
  • V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee and H. Gleiter, Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater 3 (2004), pp. 43–47.
  • W. Zhu and W. Yang, Molecular dynamics study of configuration and stability of vacancy clusters in fcc Ag. Philos. Mag 91(29) (2011), pp. 3793–3809.
  • K.O. Hara, E. Yamasue, H. Okumura and K.N. Ishihara, Molecular dynamics study of the milling-induced allotropic transformation in cobalt. Philos. Mag 92(16) (2012), pp. 2117–2129.
  • F. Delogu, Thermodynamic phase transitions in nanometer-sized metallic systems. Mater. Sci. Forum 653 (2010), pp. 31–53.
  • P. Buffat and J.P. Borel, Size effect on the melting temperature of gold particles. Phys. Rev. A 13 (1976), pp. 2287–2298.
  • C.L. Cleveland, W.D. Luedtke and U. Landman, Melting of gold clusters. Phys. Rev. B 60(7) (1999), pp. 5065–5077.
  • P. Grammatikopoulos, E. Toulkeridou, K. Nordlund, Simple analytical model of nanocluster coalescence for porous thin film design. Model. Simul. Mater. Sci. Eng 23(1) (2014), pp. 015008
  • Q.S. Mei and K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals. Progr. Mater. Sci 52(8) (2007), pp. 1175–1262.
  • B. Pluis, D. Frenkel and J.F. van der Veen, Surface-induced melting and freezing II. A semi-empirical Landau-type model. Surf. Sci. 239(3) (1990), pp. 282–300. And references therein.
  • M.J. Stevens, M.O. Robbins, Simulations of shear-induced melting and ordering. Phys. Rev. E 48(5) (1993), pp. 3778–3792
  • D. Bochicchio, R. Ferrando, E. Panizon, Structures and segregation patterns of Ag–Cu and Ag–Ni nanoalloys adsorbed on MgO(0 0 1). J. Phys. Condens. Matter 28(6) (2016), pp. 064005
  • I. Parsina and F. Baletto, Tailoring the structural motif of AgCo nanoalloys: core/shell versus Janus-like. J. Phys. Chem. C 114(3) (2010), pp. 1504–1511.
  • W.R. Tyson and W.A. Miller, Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf. Sci 62(1) (1977), pp. 267–276.
  • M. Grouchko, P. Roitman, X. Zhuet al., Merging of metal nanoparticles driven by selective wettability of silver nanostructures. Nat. Commun 5(1) (2014), pp. 3994. DOI: 10.1038/ncomms3994
  • P. Grammatikopoulos, J. Kioseoglou, A. Galea, J. Vernieres, M. Benelmekki, R.E. Diaz and M. Sowwan, Kinetic trapping through coalescence and the formation of patterned Ag–Cu nanoparticles. Nanoscale. 8(18) (2016), pp. 9780–9790.
  • S.K. Friendlander and C.S. Wang, The self-preserving particle size distribution for coagulation by Brownian motion. J. Colloid Interf. Sci 22 (1966), pp. 126–132.
  • V. Sadovnichy, A. Tikhonravov, V. Voevodin, “Lomonosov”: Supercomputing at Moscow State University, Contemporary high performance computing: from petascale toward exascale. Chapman & Hall/CRC Comp. Sci. Ser (2013), pp. 283–307. DOI: 10.1201/9781351104005-11
  • A.V. Adinets, P.A. Bryzgalov, V. Voevodin, S.A. Zhumatii, D.A. Nikitenko and K.S. Stefanov, Job digest: an approach to dynamic analysis of job characteristics on supercomputers. Num Meth Program Adv Comput 13(4) (2012), pp. 160–166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.