230
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Site stability and pipe diffusion of hydrogen under localised shear in aluminium

, &
Pages 1184-1205 | Received 27 Jul 2018, Accepted 05 Jan 2019, Published online: 20 Feb 2019

References

  • I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, and K.E. Nygren, Hydrogen embrittlement understood, Metall. Mater. Trans. A 46A (2015), pp. 2323–2341. doi: 10.1007/s11661-015-2836-1
  • M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson, Hydrogen-induced intergranular failure in Nickel revisited, Acta. Mater. 60 (2012), pp. 2739–2745. doi: 10.1016/j.actamat.2012.01.040
  • I.M. Robertson, The effect of hydrogen on dislocation dynamics, Eng. Fract. Mech. 68 (2001), pp. 671–692. doi: 10.1016/S0013-7944(01)00011-X
  • G. Girardin, C. Huvier, D. Delafosse, and X. Feaugas, Correlation between dislocation organization and slip bands: TEM and AFM investigations in hydrogen-containing nickel and nickel–chromium, Acta Mater. 91 (2015), pp. 141–151. doi: 10.1016/j.actamat.2015.03.016
  • I. Aubert, N. Saintier, J.M. Olive, and F. Plessier, A methodology to obtain data at the slip-band scale from atomic force microscopy observations and crystal plasticity simulations, Acta Mater. 104 (2016), pp. 9–17. doi: 10.1016/j.actamat.2015.11.042
  • R.P. Gangloff, H-enhanced deformation and fracture in the crack tip process zone, in Materials Performance in Hydrogen Environments: Proceedings of the 2016 International Hydrogen Conference, 2017, pp. 1–35.
  • D.N. Ilin, N. Saintier, J.M. Olive, R. Abgrall, and I. Aubert, Simulation of hydrogen diffusion affected by stress-strain heterogeneity in polycrystalline stainless steel, Int. J. Hydrog. Energy 39 (2014), pp. 2418–2422. doi: 10.1016/j.ijhydene.2013.11.065
  • A.H.M. Krom, R.W.J. Koers, and A. Bakker, Hydrogen transport near a blunting crack tip, J. Mech. Phys. Solids 47 (1999), pp. 971–992. doi: 10.1016/S0022-5096(98)00064-7
  • P. Sofronis and R. McMeeking, Numerical analysis of hydrogen transport near a blunting crack tip, J. Mech. Phys. Solids 37 (1989), pp. 317–350. doi: 10.1016/0022-5096(89)90002-1
  • B.J. Heuser, D.R. Trinkle, N. Jalarvo, J. Serio, E.J. Schiavone, E. Mamontov, and M. Tyagi, Direct measurement of hydrogen dislocation pipe diffusion in deformed polycrystalline Pd using quasielastic neutron scattering, Phys. Rev. Lett. 113 (2014), p. 025504. doi: 10.1103/PhysRevLett.113.025504
  • D. Di Stefano, M. Mrovec, and C. Elsässer, First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel, Acta Mater. 98 (2015), pp. 306–312. doi: 10.1016/j.actamat.2015.07.031
  • H. Vehoff and W. Rothe, Gaseous hydrogen embrittlement in FeSi and Ni single crystals, Acta Metall. 31 (1983), pp. 1781–1793. doi: 10.1016/0001-6160(83)90125-6
  • S.P. Lynch, Mechanisms and kinetics of environmentally assisted cracking: Current status, issues, and suggestions for further work, Metall. Mater. Trans. A 44 (2013), pp. 1209–1229. doi: 10.1007/s11661-012-1359-2
  • Y. Sun, Q. Peng, and G. Lu, Quantum mechanical modeling of hydrogen assisted cracking in aluminum, Phys. Rev. B 88 (2013), p. 104109.
  • R.J. Zamora, A.K. Nair, R.G. Hennig, and D.H. Warner, Ab initio prediction of environmental embrittlement at a crack tip in aluminum, Phys. Rev. B 86 (2012), p. 060101. doi: 10.1103/PhysRevB.86.060101
  • V.V. Bulatov and E. Kaxiras, Semidiscrete variational Peierls framework for dislocation core properties, Phys. Rev. Lett. 78 (1997), p. 4221. doi: 10.1103/PhysRevLett.78.4221
  • G. Lu, D. Orlikowski, I. Park, O. Politano, and E. Kaxiras, Energetics of hydrogen impurities in aluminum and their effect on mechanical properties, Phys. Rev. B 65 (2002), p. 064102.
  • J.R. Rice, Dislocation nucleation from a crack tip: an analysis based on the Peierls concept, J. Mech. Phys. Solids 40 (1992), pp. 239–271. doi: 10.1016/S0022-5096(05)80012-2
  • F. Apostol and Y. Mishin, Hydrogen effect on shearing and cleavage of Al: A first-principles study, Phys. Rev. B 84 (2011), p. 104103. doi: 10.1103/PhysRevB.84.104103
  • Y. Wang, D. Connétable, and D. Tanguy, Sub-surface hydrogen effect on crack tip plasticity in aluminum, to be published (2018).
  • K. Gouriet and D. Tanguy, Dislocation emission from a crack under mixed mode loading studied by molecular statics, Philos. Mag. 92 (2012), pp. 1663–1679. doi: 10.1080/14786435.2012.657704
  • V. Vítek, Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag. 18 (1968), pp. 773–786. doi: 10.1080/14786436808227500
  • S.J. Zhou, A.E. Carlsson, and R. Thomson, Dislocation nucleation and crack stability: Lattice green's-function treatment of cracks in a model hexagonal lattice, Phys. Rev. B 47 (1993), pp. 7710–7719. doi: 10.1103/PhysRevB.47.7710
  • X.J. Shen, D. Tanguy, and D. Connétable, Atomistic modelling of hydrogen segregation to the σ9{221}[110] symmetric tilt grain boundary in Al, Philos. Mag. 94 (2014), pp. 2247–2261. doi: 10.1080/14786435.2014.910333
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993), p. 558. doi: 10.1103/PhysRevB.47.558
  • G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994), p. 14251. doi: 10.1103/PhysRevB.49.14251
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), p. 11169. doi: 10.1103/PhysRevB.54.11169
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999), p. 1758. doi: 10.1103/PhysRevB.59.1758
  • H. Monkhorst and J. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), p. 5188. doi: 10.1103/PhysRevB.13.5188
  • C. Wolverton, V. Ozolins, and M. Asta, Hydrogen in aluminum: First-principles calculations of structure and thermodynamics, Phys. Rev. B 69 (2004), p. 144109. doi: 10.1103/PhysRevB.69.144109
  • H. Jónsson, G. Mills, and K. Jacobsen, Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific, Singapore, 1998.
  • L. Ismer, M.S. Park, A. Janotti, and C.V. de Walle, Interactions between hydrogen impurities and vacancies in Mg and Al: A comparative analysis based on DFT, Phys. Rev. B 80 (2009), p. 184110. doi: 10.1103/PhysRevB.80.184110
  • G.A. Young Jr and J.R. Scully, The diffusion and trapping of hydrogen in high purity aluminum, Acta Mater. 46 (1998), pp. 6337–6349. doi: 10.1016/S1359-6454(98)00333-4
  • D.N. Ilin, A.A. Kutsenko, D. Tanguy, and J.M. Olive, Effect of grain boundary trapping kinetics on diffusion in polycrystalline materials: Hydrogen transport in Ni, Model. Simul. Mater. Sci. Eng. 24 (2016), p. 035008. doi: 10.1088/0965-0393/24/3/035008
  • J. Song and W. Curtin, Mechanisms of hydrogen-enhanced localized plasticity: An atomistic study using Fe as a model system, Acta Mater. 68 (2014), pp. 61–69. doi: 10.1016/j.actamat.2014.01.008
  • Y. Sun and E. Kaxiras, Slip energy barriers in aluminium and implications for ductile-brittle behaviour, Phil. Mag. A 75 (1997), pp. 1117–1127. doi: 10.1080/01418619708214014
  • B. Amin-Ahmadi, D. Connétable, M. Fivel, D. Tanguy, R. Delmelle, S. Turner, L. Malet, S. Godet, T. Pardoen, J. Proost, and D. Schryvers, Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films, Acta Mater. 111 (2016), pp. 253–261. doi: 10.1016/j.actamat.2016.03.054
  • R. Kirchheim, Solid solutions of hydrogen in complex materials, Solid State Phys. 59 (2004), pp. 203–305. doi: 10.1016/S0081-1947(04)80004-3
  • E.V. den Eeckhout, A. Laureys, Y.V. Ingelgem, and K. Verbeken, Hydrogen permeation through deformed and heat-treated ARMCO pure iron, Mat. Sci. Tech. 33 (2017), pp. 1515–1523. doi: 10.1080/02670836.2017.1342015
  • J.P. Hirth and J. Lothe, Theory of Dislocations, Krieger Publishing Company, 1992.
  • Y. Wang, D. Connétable, and D. Tanguy, Influence of trap connectivity on H diffusion: Vacancy trapping, Acta Mater. 103 (2016), pp. 334–340. doi: 10.1016/j.actamat.2015.10.018
  • G. Subramanian, D. Perez, B.P. Uberuaga, C.N. Tomé, and A.F. Voter, Method to account for arbitrary strains in kinetic Monte Carlo simulations, Phys. Rev. B 87 (2013), p. 144107. doi: 10.1103/PhysRevB.87.144107
  • R. Gibala, W.A. Counts, and C. Wolverton, The hydrogen cold work peak in bcc iron: Revisited, with first principles calculations and implications for hydrogen embrittlement, Mater. Res. 21 (2018), p. e20170868. doi: 10.1590/1980-5373-mr-2017-0868
  • R. Oriani, The diffusion and trapping of hydrogen in steel, Acta Metall. 18 (1970), pp. 147–157. doi: 10.1016/0001-6160(70)90078-7
  • B. Puchala, M.L. Falk, and K. Garikipati, An energy basin finding algorithm for kinetic monte carlo acceleration, J. Chem. Phys. 132 (2010), p. 134104. doi: 10.1063/1.3369627
  • A.J. Kumnick and H.H. Johnson, Deep trapping states for hydrogen in deformed iron, Acta Metall. 28 (1980), pp. 33–39. doi: 10.1016/0001-6160(80)90038-3
  • D. Tanguy, H effects in Al-Mg, Al-Zn-Mg alloys, and Al: Experiments, continuum, and atomistic modeling, Corrosion 72 (2016), pp. 297–313.
  • H. Saitoh, Y. Iijima, and K. Hirano, Behaviour of hydrogen in pure aluminium, Al-4 mass% Cu and Al-1 mass% Mg2Si alloys studied by tritium electron microautoradiography, J. Mater. Sci. 29 (1994), pp. 5739–5744. doi: 10.1007/BF00349974

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.