163
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Deformation field interaction in sequential circular indentation of a strain hardening material

, &
Pages 1259-1276 | Received 02 Aug 2018, Accepted 03 Feb 2019, Published online: 27 Feb 2019

References

  • S. Basu, Z. Wang, R. Liu and C. Saldana, Enhanced subsurface grain refinement during transient shear-based surface generation, Acta Mater. 116 (2016), pp. 114–123. doi: 10.1016/j.actamat.2016.06.033
  • Y.S. Zhang, Z. Han, K. Wang and K. Lu, Friction and wear behaviors of nanocrystalline surface layer of pure copper, Wear 260 (2006), pp. 942–948. doi: 10.1016/j.wear.2005.06.010
  • H.W. Huang, Z.B. Wang, J. Lu and K. Lu, Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer, Acta Mater. 87 (2015), pp. 150–160. doi: 10.1016/j.actamat.2014.12.057
  • L.L. Shaw, J.W. Tian, A.L. Ortiz, K. Dai, J.C. Villegas, P.K. Liaw, R. Ren and D.L. Klarstrom, A direct comparison in the fatigue resistance enhanced by surface severe plastic deformation and shot peening in a C-2000 superalloy, Mater. Sci. Eng. A 527 (2010), pp. 986–994. doi: 10.1016/j.msea.2009.10.028
  • Z. Pu, S. Yang, G.L. Song, O.W. Dillon, D.A. Puleo and I.S. Jawahir, Ultrafine-grained surface layer on Mg-Al-Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance, Scr. Mater 65 (2011), pp. 520–523. doi: 10.1016/j.scriptamat.2011.06.013
  • B.N. Mordyuk, O.P. Karasevskaya, G.I. Prokopenko and N.I. Khripta, Ultrafine-grained textured surface layer on Zr-1%Nb alloy produced by ultrasonic impact peening for enhanced corrosion resistance, Surf. Coatings Technol 210 (2012), pp. 54–61. doi: 10.1016/j.surfcoat.2012.08.063
  • K. Lu, Making strong nanomaterials ductile with gradients, Science (80-.) 345 (2014), pp. 1455–1456. doi: 10.1126/science.1255940
  • X. Wu, P. Jiang, L. Chen, F. Yuan and Y.T. Zhu, Extraordinary strain hardening by gradient structure, Proc. Natl. Acad. Sci 111 (2014), pp. 7197–7201. doi: 10.1073/pnas.1324069111
  • N.R. Tao, M.L. Sui, J. Lu and K. Lua, Surface nanocrystallization of iron induced by ultrasonic shot peening, Nanostructured Mater 11 (1999), pp. 433–440. doi: 10.1016/S0965-9773(99)00324-4
  • H.L. Chan, H.H. Ruan, A.Y. Chen and J. Lu, Optimization of the strain rate to achieve exceptional mechanical properties of 304 stainless steel using high speed ultrasonic surface mechanical attrition treatment, Acta Mater. 58 (2010), pp. 5086–5096. doi: 10.1016/j.actamat.2010.05.044
  • X. Dai, J. Boll, M.E. Hayes and D.E. Aston, Adhesion of Cryptosporidium parvum and Giardia lamblia to solid surfaces: The role of surface charge and hydrophobicity, Colloid. Surf. B 34 (2004), pp. 259–263. doi: 10.1016/j.colsurfb.2003.12.016
  • C. Bernal, A.M. Camacho, J.M. Arenas and E.M. Rubio Alvir, Analytical procedure for geometrical evaluation of flat surfaces formed by multiple indentation processes, Appl. Mech. Mater 217–219 (2012), pp. 2351–2356. doi: 10.4028/www.scientific.net/AMM.217-219.2351
  • S. Bagherifard, R. Ghelichi and M. Guagliano, A numerical model of severe shot peening (SSP) to predict the generation of a nanostructured surface layer of material, Surf. Coatings Technol 204 (2010), pp. 4081–4090. doi: 10.1016/j.surfcoat.2010.05.035
  • L.E. Samuels and T.O. Mulhearn, An experimental investigation of the deformed zone associated with indentation hardness impressions, J. Mech. Phys. Solids 5 (1957), pp. 125–134. doi: 10.1016/0022-5096(57)90056-X
  • S.A. Meguid and M.S. Klair, An examination of the relevance of co-indentation studies to incomplete coverage in shot-peening using the finite-element method, J. Mech. Work. Technol 11 (1985), pp. 87–104. doi: 10.1016/0378-3804(85)90114-7
  • S.A. Meguid, G. Shagal and J.C. Stranart, 3D FE analysis of peening of strain-rate sensitive materials using multiple impingement model, Int. J. Impact Eng 27 (2002), pp. 119–134. doi: 10.1016/S0734-743X(01)00043-4
  • G.H. Majzoobi, R. Azizi and A. Alavi Nia, A three-dimensional simulation of shot peening process using multiple shot impacts, J. Mater. Process. Technol 164–165 (2005), pp. 1226–1234. doi: 10.1016/j.jmatprotec.2005.02.139
  • C. Bernal, A.M. Camacho, M.M. Marín and B. de Agustina, Methodology for the evaluation of 3D surface topography in multiple indentation processes, Int. J. Adv. Manuf. Technol 69 (2013), pp. 2091–2098. doi: 10.1007/s00170-013-5164-x
  • Z. Wang, S. Basu, T.G. Murthy and C. Saldana, Modified cavity expansion formulation for circular indentation and experimental validation, Int. J. Solids Struct 97–98 (2016), pp. 129–136. doi: 10.1016/j.ijsolstr.2016.07.035
  • S. Yadav, C. Saldana and T.G. Murthy, Deformation field evolution in indentation of a porous brittle solid, Int. J. Solids Struct 66 (2015), pp. 35–45. doi: 10.1016/j.ijsolstr.2015.04.009
  • T.G. Murthy, C. Saldana, M. Hudspeth and R. M’Saoubi, Deformation field heterogeneity in punch indentation, Proc. R. Soc. A Math. Phys. Eng. Sci 470 (2014), pp. 20130807–20130807. doi: 10.1098/rspa.2013.0807
  • N. Sundaram, Y. Guo, T.G. Murthy, C. Saldana and S. Chandrasekar, Rotation field in wedge indentation of metals, J. Mater. Res 27 (2012), pp. 284–293. doi: 10.1557/jmr.2011.294
  • T.G. Murthy, C. Huang and S. Chandrasekar, Characterization of deformation field in plane-strain indentation of metals, J. Phys. D. Appl. Phys 41 (2008), p. 074026. doi: 10.1088/0022-3727/41/7/074026
  • S.K. Kang, Y.C. Kim, K.H. Kim, J.Y. Kim and D. Kwon, Extended expanding cavity model for measurement of flow properties using instrumented spherical indentation, Int. J. Plast 49 (2013), pp. 1–15. doi: 10.1016/j.ijplas.2013.02.014
  • N. McCormick and J. Lord, Digital image correlation, Mater. Today 13 (2010), pp. 52–54. doi: 10.1016/S1369-7021(10)70235-2
  • S. Basu, Z. Wang and C. Saldana, Deformation heterogeneity and texture in surface severe plastic deformation of copper, Proc. R. Soc. London A Math. Phys. Eng. Sci 472 (2016), pp. 20150486. doi: 10.1098/rspa.2015.0486
  • Z. Wang, S. Basu, T.G. Murthy and C. Saldana, Gradient microstructure and texture in wedge-based severe plastic burnishing of copper, J. Mater. Res 33 (2018), pp. 1046–1056. doi: 10.1557/jmr.2018.58
  • G.H. Farrahi, J.L. Lebrijn and D. Couratin, Effect of shot peening on residual stress and fatigue life of a Spring steel, Fatigue Fract. Eng. Mater. Struct 18 (1995), pp. 211–220. doi: 10.1111/j.1460-2695.1995.tb00156.x
  • C. Guo, Z. Wang, D. Wang and S. Hu, Numerical analysis of the residual stress in ultrasonic impact treatment process with single-impact and two-impact models, Appl. Surf. Sci 347 (2015), pp. 596–601. doi: 10.1016/j.apsusc.2015.04.128
  • S. Bagherifard, I. Fernandez-Pariente, R. Ghelichi and M. Guagliano, Effect of severe shot peening on microstructure and fatigue strength of cast iron, Int. J. Fatigue 65 (2014), pp. 64–70. doi: 10.1016/j.ijfatigue.2013.08.022
  • X. Hernot and O. Bartier, An expanding cavity model incorporating pile-up and sink-in effects, J. Mater. Res 27 (2012), pp. 132–140. doi: 10.1557/jmr.2011.394
  • G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res 7 (1992), pp. 1564–1583. doi: 10.1557/JMR.1992.1564
  • R.B. Figueiredo, I.P. Pinheiro, M.T.P. Aguilar, P.J. Modenesi and P.R. Cetlin, The finite element analysis of equal channel angular pressing (ECAP) considering the strain path dependence of the work hardening of metals, J. Mater. Process. Technol 180 (2006), pp. 30–36. doi: 10.1016/j.jmatprotec.2006.04.017
  • S. Basu, Z. Wang and C. Saldana, Anomalous evolution of microstructure and crystallographic texture during indentation, Acta Mater. 105 (2016), pp. 25–34. doi: 10.1016/j.actamat.2015.12.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.