190
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Size effects and magnetoelastic couplings: a link between Hall–Petch behaviour and coercive field in soft ferromagnetic metals

&
Pages 1297-1326 | Received 19 Jun 2018, Accepted 28 Jan 2019, Published online: 26 Feb 2019

References

  • A. Diehl, U. Engel, and M. Geiger, Influence of microstructure on the mechanical properties and the forming behaviour of very thin metal foils, Int. J. Adv. Manufact. Techn. 47 (2010), pp. 53–61. doi: 10.1007/s00170-008-1851-4
  • T.A. Kals and R. Eckstein, Miniaturization in sheet metal working, J. Mat. Proc. Techn. 103 (2000), pp. 95–101. doi: 10.1016/S0924-0136(00)00391-5
  • E. Hug, P.A. Dubos, C. Keller, L. Duchêne, and A.M. Habraken, Size effects and temperature dependence on strain-hardening mechanisms in some face centered cubic materials, Mech. Mater. 91, Part 1 (2015), pp. 136–151. doi: 10.1016/j.mechmat.2015.07.001
  • S. Miyazaki, K. Shibata, and H. Fujita, Effect of specimen thickness on mechanical properties of polycrystalline aggregates with various grain sizes, Acta Metall. 27 (1979), pp. 855–862. doi: 10.1016/0001-6160(79)90120-2
  • E. Hug, P.A. Dubos, and C. Keller, Temperature dependence and size effects on strain hardening mechanisms in copper polycrystals, Mater. Sci. Eng. A 574 (2013), pp. 253–261. doi: 10.1016/j.msea.2013.03.025
  • C. Keller, E. Hug, and D. Chateigner, On the origin of the stress decrease for nickel polycrystals with few grains across the thickness, Mater. Sci. Eng. A 500 (2009), pp. 207–215. doi: 10.1016/j.msea.2008.09.054
  • P.A. Dubos, E. Hug, M.B. Bettaieb, and C. Keller, Size effects in thin face centered cubic metals for different complex forming loadings, Metall. Mater. Trans. A 44 (2013), pp. 5478–5487. doi: 10.1007/s11661-013-1892-7
  • P.A. Dubos, E. Hug, S. Thibault, A. Gueydan, and C. Keller, Strain path influence on size effects during thin sheet copper microforming, Int. J. Mater. Prod. Technol. 47 (2013), pp. 3–11. doi: 10.1504/IJMPT.2013.058964
  • P.R. Swann, The dislocation distribution near the surface of deformed copper, Acta Metall. 14 (1966), pp. 900–903. doi: 10.1016/0001-6160(66)90013-7
  • K. Kolb and E. Macherauch, The flow stress of surface layers of polycrystalline nickel and its influence on the residual stresses in deformed specimens, Philos. Mag. 7 (1961), pp. 580–586.
  • C. Keller, E. Hug, A.M. Habraken, and L. Duchene, Finite element analysis of the free surface effects on the mechanical behavior of thin nickel polycrystals, Int. J. Plast. 29 (2012), pp. 155–172. doi: 10.1016/j.ijplas.2011.08.007
  • C. Keller, E. Hug, R. Retoux, and X. Feaugas, TEM study of dislocation patterns in near-surface and core regions of deformed nickel polycrystals with few grains across the cross section, Mech. Mater. 42 (2010), pp. 44–54. doi: 10.1016/j.mechmat.2009.09.002
  • J. Gil Sevillano, Flow stress and work hardening, in Plastic Deformation and Fracture of Materials, H. Mughrabi, ed., VCH Verlagsgesellschaft mbH, VCH Publishers Inc., Weinheim, New York, 1993, pp. 19–88.
  • P. Pernod, V. Preobrazhensky, A. Merlen, O. Ducloux, A. Talbi, L. Gimeno, R. Viard, and N. Tiercelin, MEMS magneto-mechanical microvalves (MMMS) for aerodynamic active flow control, J. Mag. Mag. Mater. 322 (2010), pp. 1642–1646. doi: 10.1016/j.jmmm.2009.04.086
  • M. Barbic, Magnetic wires in MEMS and bio-medical applications, J. Mag. Mag. Mater. 249 (2002), pp. 357–367. doi: 10.1016/S0304-8853(02)00559-0
  • O. Hubert, and E. Hug, Influence of plastic strain on magnetic behaviour of non-oriented Fe-3Si and application to manufacturing test by punching, Mater. Sci. Technol. 11 (1995), pp. 482–487. doi: 10.1179/mst.1995.11.5.482
  • E. Hug, O. Hubert, and M. Clavel, Some aspects of the magnetomechanical coupling in the strengthening of nonoriented and grain-oriented 3%SiFe alloys, IEEE Trans. Mag. 33 (1997), pp. 763–771. doi: 10.1109/20.560110
  • S. Chikazumi, Physics of Magnetism, John Wiley & Sons, Inc., New-York, 1964.
  • F. Vicena, On the influence of dislocations on the coercive force of ferromagnetics, Czechosl. J. Phys. 5 (1955), pp. 480–487.
  • O. Hubert and L. Daniel, Multiscale modeling of the magneto-mechanical behavior of grain-oriented silicon steels, J. Mag. Mag. Mater. 320 (2008), pp. 1412–1422. doi: 10.1016/j.jmmm.2008.01.013
  • O. Hubert, L. Daniel, and R. Billardon, Experimental analysis of the magnetoelastic anisotropy of a non-oriented silicon iron alloy, J. Mag. Mag. Mater. 254–255 (2003), pp. 352–354. doi: 10.1016/S0304-8853(02)00850-8
  • E. Hug, O. Hubert, and M. Clavel, Influence of the plastic anisotropy on the magnetic properties of a nonoriented 3% silicon iron, J. Appl. Phys. 79 (1996), pp. 4571–4573. doi: 10.1063/1.361730
  • K. Mohri, T. Uchiyama, L.P. Shen, C.M. Cai, and L.V. Panina, Sensitive micro magnetic sensor family using magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measurements and controls, Sens. Actuators A 91 (2001), pp. 85–90. doi: 10.1016/S0924-4247(01)00620-3
  • Z. Gao, Z.J. Chen, D.C. Jiles, and S. Biner, Variation of coercivity of ferromagnetic material during cyclic stressing, IEEE Trans. Mag. 30 (1994), pp. 4593–4595. doi: 10.1109/20.334159
  • A. Martínez-de-Guerenu, D. Jorge-Badiola, and I. Gutiérrez, Assessing the recovery and recrystallization kinetics of cold rolled microalloyed steel through coercive field measurements, Mater. Sci. Eng. A 691 (2017), pp. 42–50. doi: 10.1016/j.msea.2017.03.033
  • R.H. Geiss and J. Silcox, Effect of dislocation distribution on the coercivity of nickel single crystals, J. Appl. Phys. 39 (1968), pp. 982–983. doi: 10.1063/1.1656357
  • V.E. Iordache, F. Ossart, and E. Hug, Magnetic characterisation of elastically and plastically tensile strained non-oriented Fe-3.2%Si steel, J. Mag. Mag. Mater. 254–255 (2003), pp. 57–59. doi: 10.1016/S0304-8853(02)00748-5
  • C. Keller, and E. Hug, Hall-Petch behaviour of Ni polycrystals with a few grains per thickness, Mater. Letters 62 (2008), pp. 1718–1720. doi: 10.1016/j.matlet.2007.09.069
  • G. Fleurier, E. Hug, M. Martinez, P.-A. Dubos, and C. Keller, Size effects and Hall-Petch relation in polycrystalline cobalt, Phil. Mag. Letters 95 (2015), pp. 122–130. doi: 10.1080/09500839.2015.1020351
  • G. Bertotti, Hysteresis in Magnetism for Physicists, Materials Scientists, and Engineers, Academic Press Series in Electromagnetism, Academic Press, San Diego, 1998.
  • C.-W. Chen, Magnetism and Metallurgy of Soft Magnetic Materials, Vol. 15, Monographs on Selected Topics in Solid State Physics, North-Holland, Amsterdam, New York, Oxford, 1977.
  • E.D. Cullity, Introduction to Magnetic Materials, 1st ed., Addison-Wesley Series in Metallurgy and Materials, Addison-Wesley Publishing Company, Reading, Massachusetts, 1972.
  • W.F.J. Brown, Chap. 4: Energy relations, in Magnetostatic Principles in Ferromagnetism, North-Holland Publishing Company, London, 1962, pp. 59–79.
  • J.B. Goodenough, A theory of domain creation and coercive force in polycrystalline ferromagnetics, Phys. Rev. 95 (1954), pp. 917–932. doi: 10.1103/PhysRev.95.917
  • A. Mager, Über den Einfluß der Korngröße auf die Koerzitivkraft, Ann. Phys. 446 (1952), pp. 15–16. doi: 10.1002/andp.19524460104
  • R.H. Yu, S. Basu, Y. Zhang, A. Parvizi-Majidi, and J.Q. Xiao, Pinning effect of the grain boundaries on magnetic domain wall in FeCo-based magnetic alloys, J. Appl. Phys. 85 (1999), pp. 6655–6659. doi: 10.1063/1.370175
  • B. Nabi, A.-L. Helbert, F. Brisset, G. André, T. Waeckerlé, and T. Baudin, Effect of recrystallization and degree of order on the magnetic and mechanical properties of soft magnetic FeCo–2V alloy, Mater. Sci. Eng. A 578 (2013), pp. 215–221. doi: 10.1016/j.msea.2013.04.066
  • B. Nabi, A.-L. Helbert, F. Brisset, R. Batonnet, G. André, T. Waeckerlé, and T. Baudin, Effect of long range order on mechanical properties of partially recrystallized Fe49Co–2V alloy, Mater. Sci. Eng. A 592 (2014), pp. 70–76. doi: 10.1016/j.msea.2013.10.093
  • E. Adler and H. Pfeifer, The influence of grain size and impurities on the magnetic properties of the soft magnetic alloy 47.5% NiFe, IEEE Trans. Mag. 10 (1974), pp. 172–174. doi: 10.1109/TMAG.1974.1058314
  • J. Degauque, B. Astie, J.L. Porteseil, and R. Vergne, Influence of the grain size on the magnetic and magnetomechanical properties of high-purity iron, J. Mag. Mag. Mat. 26 (1982), pp. 261–263. doi: 10.1016/0304-8853(82)90166-4
  • R. Meyer and L.J. Lewis, Stacking-fault energies for Ag, Cu and Ni from empirical tight-binding potentials, Phys. Rev. B 66 (2002), pp. 0521061–0521064.
  • A. Korner, and H.P. Karnthaler, Weak-beam study of glide dislocations in h.c.p. cobalt, Phil. Mag. A 48 (1983), pp. 469–477. doi: 10.1080/01418618308234904
  • R. Watanabe, Possible slip systems in body centered cubic iron, Mater. Trans. 47 (2006), pp. 1886–1889. doi: 10.2320/matertrans.47.1886
  • R. PremKumar, I. Samajdar, N.N. Viswanathan, V. Singal, and V. Seshadri, Relative effect(s) of texture and grain size on magnetic properties in a low silicon non-grain oriented electrical steel, J. Mag. Mag. Mater. 264 (2003), pp. 75–85. doi: 10.1016/S0304-8853(03)00142-2
  • H.-R. Wenk and P. Van Houtte, Texture and anisotropy, Reports Prog. Phys. 8 (2004), pp. 1367–1428. doi: 10.1088/0034-4885/67/8/R02
  • Y.T. Zhu, X.Y. Zhang, and Q. Liu, Observation of twins in polycrystalline cobalt containing face-center-cubic and hexagonal-close-packed phases, Mater. Sci. Eng. A 528 (2011), pp. 8145–8149. doi: 10.1016/j.msea.2011.07.062
  • E. Hug, O. Hubert, and J.J.V. Houtte, Effect of internal stresses on the magnetic properties of non-oriented Fe-3wt.%Si and (Fe,Co)-2wt.%V alloys, Mater. Sci. Eng. A 332 (2002), pp. 193–202. doi: 10.1016/S0921-5093(01)01722-1
  • V.E. Iordache, E. Hug, and N. Buiron, Magnetic behaviour versus tensile deformation mechanisms in a non-oriented Fe-(3wt%)Si steel, Mater. Sci. Eng. A 359 (2003), pp. 62–74. doi: 10.1016/S0921-5093(03)00358-7
  • K. Matsubara, T. Nakata, N. Takahashi, K. Fujiwara, and M. Nakano, Effects of the overhang of a specimen on the accuracy of a single sheet tester, Phys. Scripta 40 (1989), pp. 529–531. doi: 10.1088/0031-8949/40/4/019
  • T. Nakata, N. Takahashi, Y. Kawase, M. Nakano, M. Miura, and J.D. Sievert, Numerical analysis and experimental study of the error of magnetic field strength measurements with single sheet testers, IEEE Trans. Mag. 22 (1986), pp. 400–402. doi: 10.1109/TMAG.1986.1064405
  • K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater. 51 (2003), pp. 5743–5774. doi: 10.1016/j.actamat.2003.08.032
  • D.J. Dunstan and A.J. Bushby, Grain size dependence of the strength of metals: The Hall–Petch effect does not scale as the inverse square root of grain size, Int. J. Plast. 53 (2014), pp. 56–65. doi: 10.1016/j.ijplas.2013.07.004
  • Y. Li, A.J. Bushby, and D.J. Dunstan, The Hall–Petch effect as a manifestation of the general size effect, Proc. Royal Soc. London A Math. Phys. Eng. Sci. 472 (2016), pp. 1–17.
  • E.N. Hahn and M.A. Meyers, Grain-size dependent mechanical behavior of nanocrystalline metals, Mater. Sci. Eng. A 646 (2015), pp. 101–134. doi: 10.1016/j.msea.2015.07.075
  • E. Hall, The deformation and ageing of mild steel: III discussion of results, Phys. Soc. London 64 (1951), pp. 747–753. doi: 10.1088/0370-1301/64/9/303
  • N. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953), pp. 25–28.
  • R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch, The plastic deformation of polycrystalline aggregates, Philos. Mag. 7 (1962), pp. 45–58. doi: 10.1080/14786436208201857
  • R.W. Armstrong, 60 years of Hall-Petch: Past to present nano-scale connections, Mater. Trans. 55 (2014), pp. 2–12. doi: 10.2320/matertrans.MA201302
  • A.W. Thompson, Yielding in nickel as function of grain or cell size, Acta Metall. 23 (1975), pp. 1337–1342. doi: 10.1016/0001-6160(75)90142-X
  • A.W. Thompson, Effect of grain size on work hardening in nickel, Acta Metall. 25 (1977), pp. 83–86. doi: 10.1016/0001-6160(77)90249-8
  • C.C. Sanderson, Deformation of polycrystalline cobalt, Ph.D. diss., The University of British Columbia, 1972.
  • B. Legrand, Relations entre la structure électronique et la facilité de glissement dans les métaux hexagonaux compacts, Phil. Mag. B 49 (1984), pp. 171–184. doi: 10.1080/13642818408227636
  • T. Tabata, K. Takagi, and H. Fujita, The effect of grain size and deformation substructure on mechanical properties of polycrystalline copper and Cu-Al alloys, Trans. Jap. Inst. Metals 16 (1975), pp. 569–579. doi: 10.2320/matertrans1960.16.569
  • M. Rudloff, M. Risbet, C. Keller, and E. Hug, Influence of the size effect on work hardening behaviour in stage II of Ni20wt.%Cr, Mater. Letters 62 (2008), pp. 3591–3593. doi: 10.1016/j.matlet.2008.03.058
  • P.J.M. Janssen, T.H. de Keijser, and M.G.D. Geers, An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness, Mater. Sci. Eng. A 419 (2006), pp. 238–248. doi: 10.1016/j.msea.2005.12.029
  • L.V. Raulea, A.M. Goijaerts, L.E. Govaert, and F.P.T. Baaijens, Size effects in the processing of thin metal sheets, J. Mat. Proc. Techn. 115 (2001), pp. 44–48. doi: 10.1016/S0924-0136(01)00770-1
  • H. Mughrabi, K. Herz, and X. Stark, The effect of strain-rate on the cyclic deformation properties of α-iron single crystals, Acta Metall. 24 (1976), pp. 659–668. doi: 10.1016/0001-6160(76)90086-9
  • H. Mughrabi, K. Herz, and X. Stark, Cyclic deformation and fatigue behaviour of α-iron mono- and polycrystals, Int. J. Fract. 2 (1981), pp. 193–201. doi: 10.1007/BF00053520
  • X. Feaugas and H. Haddou, Effects of grain size on dislocation organization and internal stresses developed under tensile loading in fcc metals, Phil. Mag. A 87 (2007), pp. 989–1018. doi: 10.1080/14786430601019441
  • O. Hubert, E. Hug, I. Guillot, and M. Clavel, Effect of internal stresses and dislocation features on the magnetic properties of soft ferromagnetic materials, J. Phys. IV 8 (1998), pp. 515–518.
  • M. Martinez, G. Fleurier, F. Chmelík, M. Knapek, B. Viguier, and E. Hug, TEM analysis of the deformation microstructure of polycrystalline cobalt plastically strained in tension, Mater. Charact. 134 (2017), pp. 76–83. doi: 10.1016/j.matchar.2017.09.038
  • A.G. Zhou, S. Basu, and M.W. Barsoum, Kinking nonlinear elasticity, damping and microyielding of hexagonal close-packed metals, Acta Mater. 56 (2008), pp. 60–67. doi: 10.1016/j.actamat.2007.08.050
  • A.G. Zhou, D. Brown, S. Vogel, O. Yeheskel, and M.W. Barsoum, On the kinking nonlinear elastic deformation of cobalt, Mater. Sci. Eng. A 527 (2010), pp. 4664–4673. doi: 10.1016/j.msea.2010.04.048
  • J. Anglada-Rivera, L.R. Padovese, and J. Capo-Sanchez, Magnetic Barkhausen noise and hysteresis loop in commercial carbon steel: Influence of applied tensile stress and grain size, J. Mag. Mag. Mater. 231 (2001), pp. 299–306. doi: 10.1016/S0304-8853(01)00066-X
  • C.K. Hou, The effects of grain size on the magnetic properties of fully processed, continuous-annealed low-carbon electrical steels, IEEE Trans. Mag. 32 (1996), pp. 471–477. doi: 10.1109/20.486534
  • H. Kwun and G.L. Burkhardt, Effects of grain size, hardness, and stress on the magnetic hysteresis loops of ferromagnetic steels, J. Appl. Phys. 61 (1987), pp. 1576–1579. doi: 10.1063/1.338093
  • F.J.G. Landgraf, M. Emura, J.C. Teixeira, and M.F. De Campos, Effect of grain size, deformation, aging and anisotropy on hysteresis loss of electrical steels, J. Mag. Mag. Mater. 215–216 (2000), pp. 97–99. doi: 10.1016/S0304-8853(00)00076-7
  • E. Hug and C. Keller, Intrinsic effects due to the reduction of thickness on the mechanical behavior of nickel polycrystals, Metall. Mater. Trans. A 41 (2010), pp. 2498–2506. doi: 10.1007/s11661-010-0286-3
  • A.F. da Silva Júnior, M.F. de Campos, and A.S. Martins, Domain wall structure in metals: A new approach to an old problem, J. Mag. Mag. Mater. 442 (2017), pp. 236–241. doi: 10.1016/j.jmmm.2017.06.134
  • O. Hubert, M. Clavel, I. Guillot, and E. Hug, Magnetism and internal stresses: Concept of magneto-plastic anisotropy, J. Phys. IV 9 (1999), pp. 207–216.
  • J.I. Dickson, J. Boutin, and L. Handfield, A comparison of two simple methods for measuring cyclic internal and effective stresses, Mater. Sci. Eng. A 64 (1984), pp. L7–L11. doi: 10.1016/0025-5416(84)90083-1
  • J. Lemaitre and J.L. Chaboche, Mécanique des matériaux solides, Dunod, Bordas, Paris, 1988.
  • X. Feaugas, On the origin of the tensile flow stress in the stainless steel AISI 316L at 300K: Back stress and effective stress, Acta Mater. 47 (1999), pp. 3617–3632. doi: 10.1016/S1359-6454(99)00222-0
  • Y. Cui, Y. Li, Z. Wang, X. Ding, Y. Koizumi, H. Bian, L. Lin, and A. Chiba, Impact of solute elements on detwinning in magnesium and its alloys, Int. J. Plast. 91 (2017), pp. 134–159. doi: 10.1016/j.ijplas.2016.09.014
  • M. Kersten, Über die Bedeutung der Versetzungsdichte für die Theorie der Koerzitivkraft rekristallisierter Werkstoffe, Zeit. Ang. Phys. 8 (1956), pp. 496–502.
  • M. Kersten, Zur Wirkung der Versetzungen auf die Anfangspermeabilität von Nickel im rekristallisierten und im plastisch verformten Zustand, Ann. Phys. 6 (1957), pp. 337–344. doi: 10.1002/andp.19574550135
  • H. Mughrabi, Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals, Acta Metall. 31 (1983), pp. 1367–1375. doi: 10.1016/0001-6160(83)90007-X
  • O. Hubert, and S. Lazreg, Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials, J. Mag. Mag. Mater. 424 (2017), pp. 421–442. doi: 10.1016/j.jmmm.2016.10.092
  • R.M. Bozorth, Ferromagnetism, D. Van Nostrand Company, New-York, 1951.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.