2,334
Views
19
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

The specific grain-boundary electrical resistivity of Ni

ORCID Icon, , , , , , , , & show all
Pages 1139-1162 | Received 06 Oct 2018, Accepted 01 Feb 2019, Published online: 16 Feb 2019

References

  • J.M. Ziman, Electrons and Phonons, Clarendon Press, Oxford, 1960. Ch. VI.
  • G. Lormand, Electrical properties of grain boundaries. J. Phys. Coll. 43 (1982), pp. C6/283–C6/292.
  • P.V. Andrews, Resistivity due to grain boundaries in pure copper. Phys. Lett 19 (1965), pp. 558–560. doi: 10.1016/0031-9163(65)90776-6
  • P.V. Andrews, M.B. West and C.R. Robeson, The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium. Philos. Mag 19 (1969), pp. 887–898. doi: 10.1080/14786436908225855
  • M.B. Kasen, Grain boundary resistivity of aluminium. Philos. Mag 21 (1970), pp. 599–610. doi: 10.1080/14786437008238442
  • K.M. Mannan and K.R. Karim, Grain boundary contribution to the electrical conductivity of polycrystalline Cu films. J. Phys. F 5 (1975), pp. 1687–1693. doi: 10.1088/0305-4608/5/9/009
  • R.A. Brown, Electrical resistivity of dislocations in metals. J. Phys. F 7 (1977), pp. 1477–1488. doi: 10.1088/0305-4608/7/8/015
  • G. Lormand and M. Chevreton, Theoretical determination of the resistivity of relaxed periodic grain boundaries. Application to (112) twin boundaries in normal body-centred-cubic metals. Philos. Mag. B 44 (1981), pp. 389–404. In French. doi: 10.1080/01418638108223561
  • I. Nakamichi, Electrical resistivity and grain boundaries in metals. Mater. Sci. Forum 207-209 (1996), pp. 47–58. and references therein. doi: 10.4028/www.scientific.net/MSF.207-209.47
  • A.S. Karolik and A.A. Luhvich, Calculation of electrical resistivity produced by dislocations and grain boundaries in metals. J. Phys.: Cond. Matter 6 (1994), pp. 873–886.
  • M. César, D.P. Liu, D. Gall and H. Guo, Calculated resistances of single grain boundaries in copper. Phys. Rev. Appl 2 (2014), pp. 044007/1–11. doi: 10.1103/PhysRevApplied.2.044007
  • I. Bakonyi, E. Tóth-Kádár, T. Tarnóczi, L.K. Varga, Á Cziráki, L. Gerőcs and B. Fogarassy, Structure and properties of fine-grained electrodeposited nickel. Nanostruct. Mater 3 (1993), pp. 155–161. doi: 10.1016/0965-9773(93)90073-K
  • M.J. Aus, B. Szpunar, U. Erb, A.M. El-Sherik, G. Palumbo and K.T. Aust, Electrical resistivity of bulk nanocrystalline nickel. J. Appl. Phys 75 (1994), pp. 3632–3634. doi: 10.1063/1.356076
  • J.L. McCrea, K.T. Aust, G. Palumbo and U. Erb, Electrical resistivity as a characterization tool for nanocrystalline metals. MRS Symp. Proc. 581 (2000), pp. 461–466. J.L. McCrea, Ph.D. Thesis, University of Toronto, Canada, 2001. doi: 10.1557/PROC-581-461
  • P.V.P. Madduri and S.N. Kaul, Magnon-induced interband spin-flip scattering contribution to resistivity and magnetoresistance in a nanocrystalline itinerant-electron ferromagnet: effect of crystallite size. Phys. Rev. B 95 (2017), pp. 184402/1–12. doi: 10.1103/PhysRevB.95.184402
  • T. Kolonits, P. Jenei, B.G. Tóth, Z. Czigány, J. Gubicza, L. Péter and I. Bakonyi, Characterization of defect structure in electrodeposited nanocrystalline Ni films. J. Electrochem. Soc 163 (2016), pp. D107–D114. doi: 10.1149/2.0911603jes
  • T. Kolonits, P. Jenei, L. Péter, I. Bakonyi, Z. Czigány and J. Gubicza, Effect of bath additives on the microstructure, lattice defect density and hardness of electrodeposited nanocrystalline Ni films. Surf. Coat. Technol 349 (2018), pp. 611–621. doi: 10.1016/j.surfcoat.2018.06.052
  • R.T. DeHoff and F. Rhines, Quantitative Microscopy, McGraw-Hill, New York, 1968.
  • C.S. Smith and L. Guttman, Measurement of internal boundaries in three-dimensional structures by random sectioning. J. Metals 5 (1953), pp. 81–87.
  • J.H. Hensler, The relation between grain section and grain size. J. Inst. Metals 96 (1968), pp. 190–192.
  • I. Bakonyi, E. Tóth-Kádár, L. Pogány, Á Cziráki, I. Gerőcs, K. Varga-Josepovits, B. Arnold and K. Wetzig, Preparation and characterization of DC plated nanocrystalline nickel electrodeposits. Surf. Coat. Technol 78 (1996), pp. 124–136. doi: 10.1016/0257-8972(94)02399-9
  • J. Gubicza, X-ray Line Profile Analysis in Materials Science, IGI-Global, Hershey, PA, 2014. ISBN: 978-1-4666-5852-3.
  • B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, Upper Saddle River, New Jersey, 2001.
  • T. Ungár and A. Borbély, The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett 69 (1996), pp. 3173–3175. doi: 10.1063/1.117951
  • T. Ungár, Á Révész and A. Borbély, Dislocations and grain size in electrodeposited nanocrystalline Ni determined by the modified Williamson-Hall and Warren-Averbach procedures. J. Appl. Cryst 31 (1999), pp. 554–558. doi: 10.1107/S0021889897019559
  • C. Kittel, Introduction to Solid State Physics, 6th ed., Wiley, New York, 1986.
  • M.J. Laubitz, T. Matsumura and P.J. Kelly, Transport properties of the ferromagnetic metals. II. Nickel. Can. J. Phys. 54 (1976), pp. 92–102. quoted as reference data by J. Bass, Chapter 1: Electrical resistivity of pure metals and dilute alloys, in Landolt-Börnstein - Group III, New Series, Springer-Verlag, Berlin, Heidelberg, New York, 1982, Vol. 15a, pp. 1–287. doi: 10.1139/p76-011
  • I.A. Campbell, A. Fert, Transport properties of Ferromagnets, in Ferromagnetic Materials, Vol. 3, Ch. 9, Wohlfarth E.P., eds., North-Holland, Amsterdam, 1982. pp. 747–804.
  • I. Bakonyi, E. Tóth-Kádár, J. Tóth, Á Cziráki and B. Fogarassy, Electronic transport in nanocrystalline metals: a study of electrodeposited nickel foils, in Nanophase Materials. NATO ASI Series E, Vol. 260, G.C. Hadjipanayis, R.W. Siegel, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994. pp. 423–432.
  • I. Bakonyi, B. Pula, E. Tóth-Kádár, I. Gerőcs and Á Cziráki, (unpublished); B. Pula, M.Sc. Thesis, Eötvös University, Budapest, Hungary, 1996.
  • E. Tóth-Kádár, I. Bakonyi, L. Pogány and Á Cziráki, Microstructure and electrical transport properties of pulse plated nanocrystalline nickel electrodeposits. Surf. Coat. Technol 88 (1997), pp. 57–65. doi: 10.1016/S0257-8972(96)02896-4
  • H.J. Cho, S. Wang, Y. Zhou, G. Palumbo and U. Erb, Thermal conductivity of bulk electrodeposited nanocrystalline nickel. Int. J. Heat Mass Transf 100 (2016), pp. 490–496. doi: 10.1016/j.ijheatmasstransfer.2016.04.068
  • N.C. Halder and C.N.J. Wagner, Separation of particle size and lattice strain in integral breadth measurements. Acta Cryst 20 (1966), pp. 312–313. doi: 10.1107/S0365110X66000628
  • P.V.P. Madduri and S.N. Kaul, Core and surface/interface magnetic anisotropies in nanocrystalline nickel. J. All. Comp 689 (2016), pp. 533–541. doi: 10.1016/j.jallcom.2016.07.256
  • L. Lu, Y. Shen, X. Chen, L. Qian and K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science 304 (2004), pp. 422–426. doi: 10.1126/science.1092905
  • K. Fuchs, The conductivity of thin metallic films according to the electron theory of metals. Proc. Cambr. Philos. Soc 34 (1938), pp. 100–108. doi: 10.1017/S0305004100019952
  • E.H. Sondheimer, The mean free path of electrons in metals. Adv. Phys 1 (1952), pp. 1–42. doi: 10.1080/00018735200101151
  • J.R. Sambles, The resistivity of thin metal films – some critical remarks. Thin Solid Films 106 (1983), pp. 321–331. doi: 10.1016/0040-6090(83)90344-9
  • J. Vancea, G. Reiss and H. Hoffmann, Mean-free-path concept in polycrystalline metals. Phys. Rev. B 35 (1987), pp. 6435–6437. doi: 10.1103/PhysRevB.35.6435
  • J. Vancea, Unconventional features of free electrons in polycrystalline metal films. Int. J. Mod. Phys. B 3 (1989), pp. 1455–1501. doi: 10.1142/S0217979289000956
  • R. Henriquez, S. Cancino, A. Espinosa, M. Flores, T. Hoffmann, G. Kremer, J.G. Lisoni, L. Moraga, R. Morales, S. Oyarzun, M.A. Suarez, A. Zúñiga and R.C. Munoz, Electron grain boundary scattering and the resistivity of nanometric metallic structures. Phys. Rev. B 82 (2010), pp. 113409/1–4. doi: 10.1103/PhysRevB.82.113409
  • C. Reale, Electrical properties of vacuum deposited nickel films. Phys. Lett A 24 (1967), pp. 145–146. doi: 10.1016/0375-9601(67)90732-3
  • T. Böhnert, V. Vega, A.K. Michel, V.M. Prida and K. Nielsch, Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires. Appl. Phys. Lett 103 (2013), pp. 092407/1–5. doi: 10.1063/1.4819949
  • P. Wissmann, On the influence of the polycrystalline structure on the electrical resistivity of evaporated nickel films. Thin Solid Films 5 (1970), pp. 329–338. In German. doi: 10.1016/0040-6090(70)90105-7
  • H.-J. Güntherodt, E. Hauser, H.U. Künzi and R. Müller, The electrical resistivity of liquid Fe, Co, Ni and Pd. Phys. Lett. A 54 (1975), pp. 291–292. doi: 10.1016/0375-9601(75)90263-7
  • U. Seydel, W. Fucke and B. Möller, The electrical resistivity of exploding Ni-wires in fast RCL-circuits. Z. Naturf 32a (1977), pp. 147–151.
  • Y. Kita and Z. Morita, The electrical resistivity of liquid Fe-Ni, Fe-Co and Ni-Co alloys. J. Non-Cryst.-Sol 61-62 (1984), pp. 1079–1084. doi: 10.1016/0022-3093(84)90684-7
  • G. Pottlacher, H. Jäger and T. Neger, Thermophysical measurements on liquid iron and nickel. High Temp. - High Press 19 (1987), pp. 19–27.
  • G. Palumbo, S.J. Thorpe and K.T. Aust, On the contribution of triple junctions to the structure and properties of nanocrystalline materials. Scripta Met. Mater 24 (1990), pp. 1347–1350. doi: 10.1016/0956-716X(90)90354-J