531
Views
9
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Hot deformation behaviour of Ti-6Al-4V alloy with a transformed microstructure: a multimodal characterisation

, , , , &
Pages 1429-1459 | Received 18 Jun 2018, Accepted 11 Feb 2019, Published online: 04 Mar 2019

References

  • R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A, 213 (1996), pp. 103–114. doi: 10.1016/0921-5093(96)10233-1
  • M.J. Donachie, Titanium – A Technical Guide, 2nd ed., ASM International, Ohio, 2000.
  • G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys, Mater. Sci. Eng. A, 243 (1998), pp. 32–45. doi: 10.1016/S0921-5093(97)00778-8
  • R. Gnanamoorthy, Y. Mutoh, and Y. Mizuhara, Fatigue crack growth behaviour equiaxed, duplex and lamellar microstructure γ-base titanium aluminides, Intermetallics, 4 (1996), pp. 525–532. doi: 10.1016/0966-9795(96)00028-3
  • D. Banerjee and J.C. Williams, Perspectives on titanium science and technology, Acta Mater., 61 (2013), pp. 844–879. doi: 10.1016/j.actamat.2012.10.043
  • G. Lütjering and J.C. Williams, Titanium, 2nd ed., Springer-Verlag, Berlin, 2007.
  • Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.S. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of dynamic material behaviour in hot deformation: Forging of Ti-6242, Metall. Trans. A, 15 (1984), pp. 1883–1892. doi: 10.1007/BF02664902
  • F. Montheillet, J.J. Jonas, and K.W. Neale, Modeling of dynamic material behavior: A critical evaluation of the dissipator power co-content approach, Metall. Mater. Trans. A. 27 (1996), pp. 232–235. doi: 10.1007/BF02647764
  • S. Ghosh, Interpretation of microstructural evolution using dynamic materials modeling, Metall. Mater. Trans. A, 31 (2000), pp. 2973–2974. doi: 10.1007/BF02830342
  • Y.V.R.K Prasad, Author’s reply to dynamic materials model: Basis and principles: Metall. Mater. Trans. A. 27 (1996), pp. 235–236. doi: 10.1007/BF02647765
  • Y.V.R.K. Prasad and T. Seshacharyulu, Processing maps for hot working of titanium alloys, Mater. Sci. Eng. A, 243 (1998), pp. 82–88. doi: 10.1016/S0921-5093(97)00782-X
  • T. Seshacharylu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, and Y.V.R.K. Prasad, Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti-6Al-4V, Mater. Sci. Eng. A, 279 (2000), pp. 289–299. doi: 10.1016/S0921-5093(99)00173-2
  • T. Seshacharylu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure, Mater. Sci. Eng. A, 325 (2002), pp. 112–125. doi: 10.1016/S0921-5093(01)01448-4
  • S.L. Semiatin and T.R. Bieler, The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure, Acta Mater., 49 (2001), pp. 3565–3573. doi: 10.1016/S1359-6454(01)00236-1
  • R.M. Miller, T.R. Bieler, and S.L. Semiatin, Flow softening during hot working of Ti-6Al-4V with a lamellar colony microstructure, Scripta Mater., 40 (1999), pp. 1387–1393. doi: 10.1016/S1359-6462(99)00061-5
  • E.B. Shell and S.L. Semiatin, Effect of initial microstructure on plastic flow and dynamic globularisation during hot working of Ti-6Al-4V, Metall. Mater. Trans. A, 30 (1999), pp. 3219–3229. doi: 10.1007/s11661-999-0232-4
  • I. Weiss, F.H. Froes, D. Eylon, and G.E. Welsch, Modification of alpha morphology in Ti-6Al-4V by thermomechanical processing, Metall. Trans. A, 17 (1986), pp. 1935–1947. doi: 10.1007/BF02644991
  • S.L. Semiatin, V. Seetharaman, and I. Weiss, Flow behaviour and globularisation kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure, Mater. Sci. Eng. A, 263 (1999), pp. 257–271. doi: 10.1016/S0921-5093(98)01156-3
  • S. Zherebtsov, M. Murzinova, G. Salischev, and S.L. Semiatin, Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing, Acta Mater., 59 (2011), pp. 4138–4150. doi: 10.1016/j.actamat.2011.03.037
  • N. Stefansson, S.L. Semiatin, and D. Eylon, The kinetics of static globularisation of Ti-6Al-4V, Metall. Mater. Trans. A, 33 (2002), pp. 3527–3534. doi: 10.1007/s11661-002-0340-x
  • N. Stefansson and S.L. Semiatin, Mechanisms of globularisation of Ti-6Al-4V during static heat treatment, Metall. Mater. Trans. A, 34 (2003), pp. 691–698. doi: 10.1007/s11661-003-0103-3
  • J.H. Kim, S.L. Semiatin, and C.S. Soo Lee, Constitutive analysis of the high-temperature deformation of Ti-6Al-4V with a transformed microstructure, Acta Mater., 51 (2003), pp. 5613–5626. doi: 10.1016/S1359-6454(03)00426-9
  • S.L. Semiatin, J.F. Thomas, and P. Dadras, Processing-microstructure relationships for Ti-6Al-2Sn-4Zr-2Mo-0.1Si, Metall. Trans. A, 14 (1983), pp. 2363–2374. doi: 10.1007/BF02663312
  • J.L.W. Warwick, N.G. Jones, I. Bantounas, M. Preuss and D. Dye, In situ observation of texture and microstructure evolution during rolling and globularisation of Ti-6Al-4V, Acta Mater., 61 (2013), pp. 1603–1615. doi: 10.1016/j.actamat.2012.11.037
  • Y. Ito, S. Murakami, and N. Tsuji, SEM/EBSD analysis on globularisation behaviour of lamellar microstructure in Ti-6Al-4V during hot deformation and annealing, Metall. Mater. Trans. A, 48 (2017), pp. 4237–4246. doi: 10.1007/s11661-017-4180-0
  • H.W. Song, S.H. Zhang and M. Cheng, Dynamic globularisation kinetics during hot working of a two phase titanium alloy with a colony alpha microstructure, J.Alloys Compd., 480 (2009), pp. 922–927. doi: 10.1016/j.jallcom.2009.02.059
  • K. Wang, W. Zeng, Y. Zhao, Y. Lai, and Y. Zhou, Dynamic globularisation kinetics during hot working of Ti-17 alloy with initial lamellar microstructure, Mater. Sci. Eng. A, 527 (2010), pp. 2559–2566. doi: 10.1016/j.msea.2010.01.034
  • T.R. Bieler and S.L. Semiatin, The origins of heterogeneous during primary hot working of Ti-6Al-4V, Int. J. Plasticity, 18 (2002), pp. 1165–1189. doi: 10.1016/S0749-6419(01)00057-2
  • R.R. Keller and R.H. Geiss, Transmission EBSD from 10nm domains in a scanning electron microscope, J.Microsc., 245 (2012), pp. 245–251. doi: 10.1111/j.1365-2818.2011.03566.x
  • G.C. Sneddon, P.W. Trimby, and J.M. Cairney, Transmission Kikuchi diffraction in a scanning electron microscope: a review, Mater. Sci. Eng. R: Reports, 110 (2016), pp. 1–12. doi: 10.1016/j.mser.2016.10.001
  • V. Tong, S. Joseph, A.K. Ackerman, D. Dye, and T.B. Britton, Using transmission Kikuchi diffraction to characterise α variants in an α + β titanium alloy, J.Microsc., 267 (2017), pp. 318–329. doi: 10.1111/jmi.12569
  • J.L. Sun, P.W. Trimby, X. Si, X.Z. Liao, N.R. Tao, and J.L. Wang, Nano twin in ultrafine-grained Ti processed by dynamic plastic deformation, Scripta Mater., 68 (2013), pp. 475–478. doi: 10.1016/j.scriptamat.2012.11.025
  • W.G. Burgers, The process of transition of the cubic body centered modification into the hexagonal close packed modification of zirconium, Physica, 1 (1934) pp. 561–586. doi: 10.1016/S0031-8914(34)80244-3
  • D. Bhattacharya, G.B. Viswanathan, R. Denkenberger, D. Furrer, and H.L Fraser, The role of crystallographic and geometrical relationships between α and β in an α/β titanium alloy, Acta Mater., 51 (2003), pp. 4679–4691. doi: 10.1016/S1359-6454(03)00179-4
  • N. Stanford and P.S. Bate, Crystallographic variant selection in Ti-6Al-4V, Acta Mater., 52 (2004), pp. 5215–5224. doi: 10.1016/j.actamat.2004.07.034
  • L. Li, M.Q. Li and J. Luo, Mechanism in the β phase evolution during hot deformation of Ti-5Al-2Sn-2Zr-4Mo-4Cr with a transformed microstructure, Acta Mater., 94 (2015), pp. 36–45. doi: 10.1016/j.actamat.2015.04.045
  • S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, and S.L. Semaitin, Microstructure evolution during warm working of Ti-6Al-4V with a colony α microstructure, Acta Mater., 57 (2009), pp. 2470–2481. doi: 10.1016/j.actamat.2009.02.016
  • L. Chai, B. Luan, M. Zhang, K.L. Murty, and Q. Liu, Experimental observation of 12 α variants inherited from one β grain in a Zr alloy, J.Nucl. Mater., 440 (2013), pp. 377–381. doi: 10.1016/j.jnucmat.2013.05.053
  • S.M.C. Van Bohemen, A. Kamp, R.H. Petrov, L.A.I. Kestens, and J. Seitsma, Nucleation and variant selection of secondary α plates in β Ti alloy, Acta Mater., 56 (2008), pp. 5907–5914. doi: 10.1016/j.actamat.2008.08.016
  • R. Shi, V. Dixit, H.L. Fraser and Y. Wang, Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys, Acta Mater., 75 (2014), pp. 156–166. doi: 10.1016/j.actamat.2014.05.003
  • S.C. Wang, M. Aindow and M.J. Starink, Effect of self-accommodation on α/α boundary populations in pure titanium, Acta Mater., 51 (2003), pp. 2485–2503. doi: 10.1016/S1359-6454(03)00035-1
  • N. Gey, and M. Humbert, Characterisation of the variant selection occurring during the α→β→α phase transformations of a cold rolled titanium sheet, Acta Mater., 50 (2002), pp. 277–287. doi: 10.1016/S1359-6454(01)00351-2
  • G.C. Obasi, S. Birosca, J. Quinta da Fonseca and M. Preuss, Effect of β grain growth on variant selection and texture memory effect during α→β→α phase transformation in Ti-6Al-6V, Acta Mater., 60 (2012), pp. 1048–1058. doi: 10.1016/j.actamat.2011.10.038
  • T. Furuhara, T. Ogawa, and T. Maki, Atomic structure of interphase boundary of an α precipitate plate in a β Ti-Cr alloy, Phil. Mag. Lett., 72 (1995) pp. 175–183. doi: 10.1080/09500839508242449
  • S. Zherebtsov, G. Salishcheva and S.L. Semiatin, Loss of coherency of the alpha/beta interface boundary in titanium alloys during deformation, Phil. Mag. Lett., 90 (2010) pp. 903–914. doi: 10.1080/09500839.2010.521526
  • B. Guo, S.L. Semiatin, J. Liang, B. Sun, and J.J. Jonas, Opposing and driving forces associated with the dynamic transformation of Ti-6Al-4V, Metall. Mater. Trans. A., 49 (2018), pp.1450–1454.
  • B. Guo, S.L. Semiatin, J.J. Jonas, and Y. Stephen, Dynamic transformation of Ti-6Al-4V during torsion in two phase region, J.Mater. Sci., 53 (2018), pp. 9305–9315. doi: 10.1007/s10853-018-2237-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.