186
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A non-singular continuum theory of point defects using gradient elasticity of bi-Helmholtz type

Pages 1563-1601 | Received 01 Aug 2018, Accepted 05 Feb 2019, Published online: 15 Mar 2019

References

  • G. Leibfried and N. Breuer, Point defects in metals I, in Springer Tracts in Modern Physics, Vol. 81, Springer, Berlin, 1978.
  • C. Teodosiu, Elastic Models of Crystal Defects, Springer, Berlin, 1982.
  • R.W. Balluffi, Introduction to Elasticity Theory for Crystal Defects, Cambridge University Press, Cambridge, 2012.
  • F.R.N. Nabarro, Theory of Crystal Dislocations, Oxford University Press, Oxford, 1967.
  • E. Clouet, The vacancy-edge dislocation interaction in fcc metals: A comparison between atomic simulations and elasticity theory, Acta. Mater. 54 (2006), pp. 3543–3552. doi: 10.1016/j.actamat.2006.03.043
  • C. Varvenne, F. Bruneval, M.C. Marinica and E. Clouet, Point defect modeling in materials: Coupling ab initio and elasticity approaches, Phys. Rev. B 88 (2013), pp. 134102. doi: 10.1103/PhysRevB.88.134102
  • E. Clouet, C. Varvenne and T. Jourdan, Elastic modeling of point-defects and their interaction, Comput. Mater. Sci. 147 (2018), pp. 49–63. doi: 10.1016/j.commatsci.2018.01.053
  • J.D. Eshelby, The elastic interaction of point defects, Acta Metall. 3 (1955), pp. 487–490. doi: 10.1016/0001-6160(55)90140-1
  • J.D. Eshelby, The continuum theory of lattice defects, Solid State Phys. 3 (1956), pp. 79–144. doi: 10.1016/S0081-1947(08)60132-0
  • M. Lazar, Micromechanics and theory of point defects in anisotropic elasticity, J. Micromech. Mol. Phys. 2 (2017), pp. 1750005 [19 pages]. doi: 10.1142/S2424913017500059
  • A.C. Eringen, Nonlocal Continuum Field Theories, Springer, New York, 2002.
  • I. Kovács, Nonlocal elastic interaction between point defects and dislocations, Arch. Mech. 33 (1981), pp. 901–908.
  • R. Wang, Non-local elastic interaction energy between a dislocation and a point defect, J. Phys. D Appl. Phys. 23 (1990), pp. 263–265. doi: 10.1088/0022-3727/23/2/022
  • Y.Z. Povstenko, Point defects in a nonlocal elastic medium, J. Math. Sci. 104 (2001), pp. 1501–1505. doi: 10.1023/A:1011331602477
  • B.K.D. Gairola, The nonlocal theory of elastic and its application to interaction between point defects, Arch. Mech. 28 (1976), pp. 393–404.
  • B.K.D. Gairola, Nonlocal theory of elastic interaction between point defects, Phys. Status Solidi (b) 85 (1978), pp. 577–585. doi: 10.1002/pssb.2220850221
  • G. Vörös and I. Kovács, Static lattice defects in a quasi-continuum, phys. Status Solidi (b) 178 (1993), pp. 99–107. doi: 10.1002/pssb.2221780108
  • G. Vörös and I. Kovács, Elastic interaction between point defects and dislocations in quasi-continuum, Philos. Mag. A 72 (1995), pp. 949–961. doi: 10.1080/01418619508239946
  • W.F. Adler, Point-defect interactions in elastic materials of grade 2, Phys. Rev. 186 (1969), pp. 666–674. doi: 10.1103/PhysRev.186.666
  • R.A. Toupin, Elastic materials with couple-stresses, Arch. Ration. Mech. Anal. 11 (1962), pp. 385–414. doi: 10.1007/BF00253945
  • R.D. Mindlin, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal. 16 (1964), pp. 51–78. doi: 10.1007/BF00248490
  • I. Dobovšek, Problem of a point defect, spatial regularization and intrinsic length scale in second gradient elasticity, Mater. Sci. Eng. A 423 (2006), pp. 92–96. doi: 10.1016/j.msea.2005.11.067
  • N.M. Vlasov, Interaction of point defects with an edge dislocation in the gradient theory of elasticity, Phys. Solid State 43 (2001), pp. 2083–2086. doi: 10.1134/1.1417184
  • Z. Wang, S. Rudraraju and K. Garikipati, A three dimensional field formulation, and isogeometric solutions to point and line defects using Toupin's theory of gradient elasticity at finite strains, J. Mech. Phys. Solids 94 (2016), pp. 336–361. doi: 10.1016/j.jmps.2016.03.028
  • R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids. Struct. 1 (1965), pp. 417–438. doi: 10.1016/0020-7683(65)90006-5
  • R.D. Mindlin, Elasticity, piezoelectricity and crystal lattice dynamics, J. Elast. 2 (1972), pp. 217–282. doi: 10.1007/BF00045712
  • W. Jaunzemis, Continuum Mechanics, The Macmillan Company, New York, 1967.
  • C.H. Wu, Cohesive elasticity and surface phenomena, Quar. Appl. Math. L 1 (1992), pp. 73–103. doi: 10.1090/qam/1146625
  • E.K. Agiasofitou and M. Lazar, Conservation and balance laws in linear elasticity of grade three, J. Elast. 94 (2009), pp. 69–85. doi: 10.1007/s10659-008-9185-x
  • L. Truskinovsky and A. Vainchtein, Quasicontinuum modelling of short-wave instabilities in crystal lattices, Philos. Mag. 85 (2005), pp. 4055–4065. doi: 10.1080/14786430500363270
  • M. Lazar, G.A. Maugin and E.C. Aifantis, Dislocations in second strain gradient elasticity, Int. J. Solids. Struct. 43 (2006), pp. 1787–1817; Addendum, International Journal of Solids and Structures 47 (2010), 738–739. doi: 10.1016/j.ijsolstr.2005.07.005
  • M. Lazar and G.A. Maugin, Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity, Int. J. Eng. Sci. 43 (2005), pp. 1157–1184. doi: 10.1016/j.ijengsci.2005.01.006
  • C. Polizzotto, Gradient elasticity and nonstandard boundary conditions, Int. J. Solids. Struct. 40 (2003), pp. 7399–7423. doi: 10.1016/j.ijsolstr.2003.06.001
  • X. Zhang, K. Jiao, P. Sharma and B.I. Yakobson, An atomistic and non-classical continuum field theoretic perspective of elastic interactions between defects (force dipoles) of various symmetries and application to graphene, J. Mech. Phys. Solids 54 (2006), pp. 2304–2329. doi: 10.1016/j.jmps.2006.06.007
  • M. Lazar and G.A. Maugin, Dislocations in gradient elasticity revisited, Proc. R. Soc. A 462 (2006), pp. 3465–3480. doi: 10.1098/rspa.2006.1699
  • M. Lazar, The fundamentals of non-singular dislocations in the theory of gradient elasticity: Dislocation loops and straight dislocations, Int. J. Solids. Struct. 50 (2013), pp. 352–362. doi: 10.1016/j.ijsolstr.2012.09.017
  • S. Deng, J. Liu and N. Liang, Wedge and twist disclinations in second strain gradient elasticity, Int. J. Solids. Struct. 44 (2007), pp. 3646–3665. doi: 10.1016/j.ijsolstr.2006.10.011
  • S.M. Mousavi, Dislocation-based fracture mechanics within nonlocal and gradient elasticity of bi-Helmholtz type-Part I: Antiplane analysis, Int. J. Solids. Struct. 87 (2016), pp. 222–235. doi: 10.1016/j.ijsolstr.2015.10.033
  • S.M. Mousavi, Dislocation-based fracture mechanics within nonlocal and gradient elasticity of bi-Helmholtz type-Part II: Inplane analysis, Int. J. Solids. Struct. 92–93 (2016), pp. 105–120. doi: 10.1016/j.ijsolstr.2016.03.025
  • D. Lyu and S. Li, A multiscale dislocation pattern dynamics: Towards an atomistic-informed crystal plasticity theory, J. Mech. Phys. Solids 122 (2019), pp. 613–632. doi: 10.1016/j.jmps.2018.09.025
  • M. Lazar, G.A. Maugin and E.C. Aifantis, On the theory of nonlocal elasticity of bi-Helmholtz type and some applications, Int. J. Solids. Struct. 43 (2006), pp. 1404–1421. doi: 10.1016/j.ijsolstr.2005.04.027
  • D.A. Fafalis, S.P. Filopoulos and G.J. Tsamasphyros, On the capability of generalized continuum theories to capture dispersion characteristics at the atomic scale, Eur. J. Mech. A/Solids 36 (2012), pp. 25–37. doi: 10.1016/j.euromechsol.2012.02.004
  • N.M. Cordero, S. Forest and E.P. Busso, Second strain gradient elasticity of nano-objects, J. Mech. Phys. Solids 97 (2016), pp. 92–124. doi: 10.1016/j.jmps.2015.07.012
  • S. Khakalo and J. Niiranen, Form II of Mindlin's second strain gradient theory of elasticity with a simplification: For materials and structures from nano- to macro-scales, Eur. J. Mech. A/Solids 71 (2018), pp. 292–319. doi: 10.1016/j.euromechsol.2018.02.013
  • E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Ration. Mech. Anal. 4 (1960), pp. 273–333. doi: 10.1007/BF00281393
  • R. deWit, A view of the relation between the continuum theory of lattice defects and non-Euclidean geometry in the linear approximation, Int. J. Eng. Sci. 19 (1981), pp. 1475–1506. doi: 10.1016/0020-7225(81)90073-2
  • E. Kröner, Die Versetzung als elementare Eigenspannungsquelle, Z. Naturforsch. 11 (1956), pp. 969–985.
  • E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Springer, Berlin, 1958.
  • E. Kröner, Continuum theory of defects, in Physics of Defects (Les Houches, Session 35), R. Balian, et al., eds., North-Holland, Amsterdam, 1981, pp. 215–315.
  • R. deWit, Theory of disclinations III, J. Res. Natl. Bureau Stand. 77A (1973), pp. 359–368. doi: 10.6028/jres.077A.024
  • C. Polizzotto, A note on the higher order strain and stress tensors within deformation gradient elasticity theories: Physical interpretations and comparisons, Int. J. Solids. Struct. 90 (2016), pp. 116–121. doi: 10.1016/j.ijsolstr.2016.04.001
  • S. Forest and K. Sab, Stress gradient continuum theory, Mech. Res. Commun. 40 (2012), pp. 16–25. doi: 10.1016/j.mechrescom.2011.12.002
  • C. Polizzotto, A micromorphic approach to stress gradient elasticity theory with an assessment of the boundary conditions and size effects, Z. Angew. Math. Mech. 98 (2018), pp. 1528–1553. doi: 10.1002/zamm.201700364
  • T. Mura, Micromechanics of Defects in Solids, 2nd ed., Martinus Nijhoff, Dordrecht, 1987.
  • H.M. Shodja, A. Zaheri and A. Tehranchi, Ab initio calculations of characteristic lengths of crystalline materials in first strain gradient elasticity, Mech. Mater. 61 (2013), pp. 73–78. doi: 10.1016/j.mechmat.2013.03.006
  • M. Lazar, Non-singular dislocation continuum theories: Strain gradient elasticity versus Peierls-Nabarro model, Philos. Mag. 97 (2017), pp. 3246–3275. doi: 10.1080/14786435.2017.1375608
  • G. Po, M. Lazar, N.C. Admal and N. Ghoniem, A non-singular theory of dislocations in anisotropic crystals, Int. J. Plastic. 103 (2018), pp. 1–22. doi: 10.1016/j.ijplas.2017.10.003
  • H.M. Shodja, F. Ahmadpoor and A. Tehranchi, Calculation of the additional constants for fcc materials in second strain gradient elasticity: Behavior of a nano-size Bernoulli-Euler beam with surface effects, J. Appl. Mech. 79 (2012), pp. 021008 (8 pages). doi: 10.1115/1.4005535
  • F. Ojaghnezhad and H.M. Shodja, A combined first principles and analytical determination of the modulus of cohesion, surface energy, and the additional constants in the second strain gradient elasticity, Int. J. Solids. Struct. 50 (2013), pp. 3967–3974. doi: 10.1016/j.ijsolstr.2013.08.004
  • A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (1983), pp. 4703–4710. doi: 10.1063/1.332803
  • I.A. Kunin, Elastic Media with Microstructure II: Three-Dimensional Models, Springer, Berlin, 1983.
  • E. Giusti, Minimal Surfaces and Functions of Bounded Variations, Birkhäuser, Basel-Boston-Stuttgart, 1984.
  • D.J. Bacon, D.M. Barnett and R.O. Scattergood, Anisotropic continuum theory of defects, Progr. Mater. Sci. 23 (1979), pp. 51–262. doi: 10.1016/0079-6425(80)90007-9
  • M. Lazar, On gradient field theories: Gradient magnetostatics and gradient elasticity, Philos. Mag. 94 (2014), pp. 2840–2874. doi: 10.1080/14786435.2014.935512
  • C.Q. Ru and E.C. Aifantis, A simple approach to solve boundary-value problems in gradient elasticity, Acta. Mech. 101 (1993), pp. 59–68. doi: 10.1007/BF01175597
  • E. Kossecka, Surface distribution of double forces, Arch. Mech. 23 (1971), pp. 313–328.
  • B.C. Altan and E.C. Aifantis, On some aspects in the special theory of gradient elasticity, J. Mech. Behav. Mater. 8 (1997), pp. 231–282. doi: 10.1515/JMBM.1997.8.3.231
  • D. Rogula, Some basic solutions in strain gradient elasticity theory of an arbitrary order, Arch. Mech. 25 (1973), pp. 43–68.
  • C.P. Frahm, Some novel delta-function identities, Am. J. Phys. 51 (1983), pp. 826–829. doi: 10.1119/1.13127
  • G. Wentzel, Quantum Theories of Fields, Interscience Publishers, New York, 1949.
  • B. Felsager, Geometry, Particles, and Fields, Springer, New York, 1998.
  • A.H. Cottrell and B.A. Bilby, Dislocation theory of yielding and strain ageing of iron, Proc. Phys. Soc. A 62 (1949), pp. 49–62. doi: 10.1088/0370-1298/62/1/308

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.