267
Views
4
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Half-metallicity and onsite Hubbard interaction on d-electronic states: a case study of Fe2NiZ (Z = Al, Ga, Si, Ge) Heusler systems

, ORCID Icon, , & ORCID Icon
Pages 1551-1562 | Received 30 Nov 2018, Accepted 11 Feb 2019, Published online: 05 Mar 2019

References

  • S. Chen and Z. Ren, Recent progress of half-Heusler for moderate temperature thermoelectric applications. Mater. Today 16 (2013), pp. 387–395. doi: 10.1016/j.mattod.2013.09.015
  • P. Nordblad, Heusler alloys: tuning exchange bias. Nat. Mater. 14 (2015), pp. 655–656. doi: 10.1038/nmat4331
  • H. Xie, H. Wang, C. Fu, Y. Liu, G.J. Snyder, X. Zhao, and T. Zhu, The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci. Rep. 4 (2015), pp. 6888 (1–6). doi: 10.1038/srep06888
  • S. Yousuf and D.C. Gupta, Investigation of electronic, magnetic and thermoelectric properties of Zr2NiZ (Z = Al, Ga) ferromagnets. Mat. Chem. Phys. 192 (2017), pp. 33–40. doi: 10.1016/j.matchemphys.2017.01.056
  • S. Yousuf and D.C. Gupta, Insight into half-metallicity, spin-polarization and mechanical properties of L21 structured MnY2Z (Z = Al, Si, Ga, Ge, Sn, Sb) Heusler alloys. J. Alloys Compd. 735 (2018), pp. 1245–1252. doi: 10.1016/j.jallcom.2017.11.239
  • D.C. Gupta and I.H. Bhat, Investigation of high spin-polarization, magnetic, electronic and half-metallic properties in RuMn2Ge and RuMn2Sb Heusler alloys. Mater. Sci. Eng. B. 193 (2015), pp. 70–75. doi: 10.1016/j.mseb.2014.11.009
  • X.T. Wang, Z.X. Cheng, H.K. Yuan, and R. Khenata, L21 and XA ordering competition in titanium-based full-Heusler alloys. J. Mater. Chem. C. 5 (2017), pp. 11559–11564. doi: 10.1039/C7TC03909C
  • I.H. Bhat, S. Yousuf, T. Mohiuddin and D.C. Gupta, Investigation of electronic structure, magnetic and transport properties of half-metallic Mn2CuSi and Mn2ZnSi Heusler alloys. J. Magn. Magn. Mater. 395 (2015), pp. 81–88. doi: 10.1016/j.jmmm.2015.07.022
  • S. Yousuf and D.C. Gupta, Insight into electronic, mechanical and transport properties of quaternary CoVTiAl: spin-polarized DFT + U approach. Mater. Sci. Eng. B. 221 (2017), pp. 73–79. doi: 10.1016/j.mseb.2017.04.004
  • R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50 (1983), pp. 2024–2027. doi: 10.1103/PhysRevLett.50.2024
  • S. Yousuf and D.C. Gupta, Unravelling the magnetism, high spin polarization and thermoelectric efficiency of ZrFeSi half-Heusler. Physica B. 534 (2018), pp. 5–9. doi: 10.1016/j.physb.2018.01.011
  • B. Balke, S. Wurmehl, G.H. Fecher, C. Felser, and J. Kübler, Rational design of new materials for spintronics: Co2FeZ(Z = Al, Ga, Si, Ge). Sci. Technol. Adv. Mater. 9 (2008), pp. 014102 (13pp). doi: 10.1088/1468-6996/9/1/014102
  • G.D. Liu, X.F. Dai, H.Y. Liu, J.L. Chen, Y.X. Li, G. Xiao, and G.H. Wu, Mn2CoZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) compounds: structural, electronic, and magnetic properties. Phys. Rev. B. 77 (2008), pp. 014424 (12). doi: 10.1103/PhysRevB.77.014424
  • I.H. Bhat, T.M. Bhat, and D.C. Gupta, Magneto-electronic and thermoelectric properties of some Fe-based Heusler alloys. J. Phys. Chem. Solids 119 (2018), pp. 251–257. doi: 10.1016/j.jpcs.2018.04.008
  • S. Yousuf and D.C. Gupta, Ternary germanide Li2ZnGe: a new candidate for high temperature thermoelectrics. J. Alloys Compd. 738 (2018), pp. 501–508. doi: 10.1016/j.jallcom.2017.12.211
  • K.H.J. Bushcow and P.G. van Engen, Magnetic and magneto-optical properties of heusler alloys based on aluminium and gallium. J. Magn. Magn. Mater. 25 (1981), pp. 90–96. doi: 10.1016/0304-8853(81)90151-7
  • W. Zhu, E.K. Liu, L. Feng, X.D. Tang, J.L. Chen, G.H. Wu, H.Y. Liu, F.B. Meng, and H.Z. Luo, Magnetic-field-induced transformation in FeMnGa alloys. Appl. Phys. Lett. 95 (2009), pp. 222512 (1–3). doi: 10.1063/1.3269590
  • Y.J. Zhang, W.H. Wang, H.G. Zhang, E.K. Liu, R.S. Ma, and G.H. Wu, Structure and magnetic properties of Fe2NiZ (Z = Al, Ga, Si and Ge) Heusler alloys. Physica B. 420 (2013), pp. 86–89. doi: 10.1016/j.physb.2013.04.005
  • D.C. Gupta and I.H. Bhat, Full-potential study of Fe2NiZ (Z = Al, Si, Ga, Ge). Mat. Chem. Phys. 146 (2014), pp. 303–312. doi: 10.1016/j.matchemphys.2014.03.027
  • K. Schwarz, P. Blaha, and G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147 (2002), pp. 71–76. doi: 10.1016/S0010-4655(02)00206-0
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane WaveþLocal Orbitals Program for Calculating Crystal Properties, Karlheinz schwarz, Techn. Universitaet Wien, Wien, 2001.
  • P. Blaha, K. Schwarz, P. Sorantin, and S.B. Tricky, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59 (1990), pp. 399–415. doi: 10.1016/0010-4655(90)90187-6
  • T.M. Bhat and D.C. Gupta, Effect of on-site Coulomb interaction on electronic and transport properties of 100% spin polarized CoMnVAs. J. Mag. Magn. Mater. 435 (2018), pp. 173–178. doi: 10.1016/j.jmmm.2017.04.012
  • M. Friák, S. Oweisová, J. Pavlu, D. Holec, and M. Šob, An Ab initio study of thermodynamic and mechanical stability of Heusler-based Fe2AlCo polymorphs. Materials 11 (2018), pp. 1543 (1–12). doi: 10.3390/ma11091543
  • Z.H. Liu, Y.J. Zhang, E.K. Liu, G.D. Liu, X.Q. Ma, and G.H. Wu, Role of d-d and p-d hybridization in CoTi-based magnetic semiconductors with 21 and 26 valence electrons. J. Phys. D. Appl. Phys. 48 (2015), pp. 325001 (1–8). doi: 10.1088/0022-3727/48/32/325001
  • G.K.H. Madsen and D.J. Singh, Boltztrap. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175 (2006), pp. 67–71. doi: 10.1016/j.cpc.2006.03.007
  • D.C. Gupta and S. Ghosh, First-principal study of full Heusler alloys Co2VZ (Z = As, In). J. Mag. Magn. Mater. 435 (2017), pp. 107–116. doi: 10.1016/j.jmmm.2017.03.067
  • G.K.H. Madsen, Automated search for new thermoelectric materials: the case of LiZnSb. J. Am. Chem. Soc. 128 (2006), pp. 12140–12146. doi: 10.1021/ja062526a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.