297
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Melting and solidification characteristics of Zr-, Ni-, and Mn-containing 354-type Al-Si-Cu-Mg cast alloys

, , , &
Pages 1633-1655 | Received 16 Sep 2018, Accepted 28 Feb 2019, Published online: 14 Apr 2019

References

  • C. Kliemt, Thermo-mechanical fatigue of cast aluminium alloys for engine applications under severe conditions, PhD. Thesis, Heriot-Watt University, 2012.
  • J.A. Lee, Cast Aluminum Alloy for High Temperature Applications, 132nd TMS Annual Meeting and Exhibition, San Diego, CA, United States, 2003.
  • R. Sampathi, Die Casting Industry to Become a $76 Billion Market by 2020. 2015; Available at https://www.linkedin.com/pulse/vacuum-die-casting-overshadow-dominant-hpdc-market-76-sampathi.
  • H. Ammar, Influence of metallurgical parameters on the mechanical properties and quality indices of Al-Si-Cu-Mg and Al-Si-Mg casting alloys, PhD. Thesis, Université du Québec à Chicoutimi, 2010.
  • J. Hernandez-Sandoval, Improving the performance of 354 type alloy, PhD. Thesis, Université du Québec à Chicoutimi, 2010.
  • G.H. Garza-Elizondo, Effect of Ni, Mn, Zr and Sc additions on the performance of Al-Si-Cu-Mg alloys, PhD. Thesis, Université du Québec à Chicoutimi, 2016.
  • S.K. Shaha, Development and characterization of cast modified Al-Si-Cu-Mg alloys for heat Resistant power train applications, PhD. Thesis, Ryerson University, 2015.
  • L. Alyaldin, Effects of alloying elements on room and high temperature tensile properties of Al-Si-Cu-Mg base alloys, MSc. Thesis, Université du Québec à Chicoutimi, 2017.
  • J. Hernandez-Sandoval, G.H. Garza-Elizondo, A.M. Samuel, S. Valtiierra and F.H. Samuel, The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions. Mater. Des. 58 (2014), pp. 89–101. doi: 10.1016/j.matdes.2014.01.041
  • L. Lasa and J. Rodriguez-Ibabe, Evolution of the main intermetallic phases in Al-Si-Cu-Mg casting alloys during solution treatment. J. Mater. Sci. 39(4) (2004), pp. 1343–1355. doi: 10.1023/B:JMSC.0000013895.72084.c9
  • A. Mohamed and F. Samuel, Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys. Mater. Sci. Eng.: A 577 (2013), pp. 64–72. doi: 10.1016/j.msea.2013.03.084
  • E. Zappi, The effect of Zr and V on the structural and mechanical properties of the 2618 Al alloy, MSc. Thesis, Norwegian University of Science and Technology, 2014.
  • Z. Asghar, G. Requena and F. Kubel, The role of Ni and Fe aluminides on the elevated temperature strength of an AlSi12 alloy. Mater. Sci. Eng.: A 527(21) (2010), pp. 5691–5698. doi: 10.1016/j.msea.2010.05.033
  • K.E. Knipling, Development of a nanoscale precipitation-strengthened creep-resistant aluminum alloy containing trialuminide precipitates, PhD. Thesis, Northwestern University, 2006.
  • S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman and D.L. Chen, Monotonic and cyclic deformation behavior of the Al–Si–Cu–Mg cast alloy with micro-additions of Ti, V and Zr. Int. J. Fatigue 70 (2015), pp. 383–394. doi: 10.1016/j.ijfatigue.2014.08.001
  • K.E. Knipling, D.C. Dunand and D.N. Seidman, Criteria for developing castable, creep-resistant aluminum-based alloys–A review. Zeitschrift für Metallkunde 97(3) (2006), pp. 246–265. doi: 10.3139/146.101249
  • G.H. Garza-Elizondo, A.M. Samuel, S. Valtierra and F.H. Samuel, Phase precipitation in transition metal-containing 354-type alloys. Int. J. Mater. Res. 108(2) (2017), pp. 108–125. doi: 10.3139/146.111455
  • Y. Fan, K. Huang and M.M. Makhlouf, Precipitation strengthening in Al-Ni-Mn Alloys. Metall. Mater. Trans. A 46(12) (2015), pp. 5830–5841. doi: 10.1007/s11661-015-3119-6
  • S.W. Nam and D.H. Lee, The effect of Mn on the mechanical behavior of Al alloys. Met. Mater. 6(1) (2000), pp. 13–16. doi: 10.1007/BF03026339
  • D.S. Park and S.W. Nam, Effects of manganese dispersoid on the mechanical properties in Al-Zn-Mg alloys. J. Mater. Sci. 30(5) (1995), pp. 1313–1320. doi: 10.1007/BF00356137
  • J.E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, 1984.
  • L. Backerud, G. Chai, and J. Tamminen, Solidification Characteristics of Aluminum Alloys. Vol. 2. Foundry Alloys, American Foundrymen’s Society, Inc., Schaumburg, Illinois, 1990. p. 266.
  • Q. Wang, Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall. Mater. Trans. A 34(12) (2003), pp. 2887–2899. doi: 10.1007/s11661-003-0189-7
  • S. Shabestari and S. Ghodrat, Assessment of modification and formation of intermetallic compounds in aluminum alloy using thermal analysis. Mater. Sci. Eng.: A 467(1) (2007), pp. 150–158. doi: 10.1016/j.msea.2007.05.022
  • S.G. Shabestari and R. Gholizadeh, Assessment of intermetallic compound formation during solidification of Al–Si piston alloys through thermal analysis technique. Mater. Sci. Technol. 28(2) (2012), pp. 156–164. doi: 10.1179/1743284711Y.0000000004
  • K. Ghosh and N. Gao, Determination of kinetic parameters from calorimetric study of solid state reactions in 7150 Al-Zn-Mg alloy. Trans. Nonferrous Metals Soc. China 21(6) (2011), pp. 1199–1209. doi: 10.1016/S1003-6326(11)60843-1
  • E.A. Elsharkawi, E. Samuel, A.M. Samuel and F.H. Samuel, Effects of Mg, Fe, Be additions and solution heat treatment on the π-AlMgFeSi iron intermetallic phase in Al–7Si–Mg alloys. J. Mater. Sci. 45(6) (2010), pp. 1528–1539. doi: 10.1007/s10853-009-4118-z
  • Handbook A.S.M, Alloy Phase Diagrams, ASM international, Metals Park, Ohio, 1992. 2–319.
  • E. Elgallad, Z. Zhang and X.-G. Chen, Effect of two-step aging on the mechanical properties of AA2219 DC cast alloy. Mater. Sci. Eng.: A 625 (2015), pp. 213–220. doi: 10.1016/j.msea.2014.12.002
  • Nabawy, A., Influence of zirconium and scandium on the microstructure, tensile properties, and hot-tearing susceptibility of Al-2wt% Cu-based alloys, PhD. Thesis, Université du Québec à Chicoutimi, 2010.
  • D. Srinivasan and K. Chattopadhyay, Non-equilibrium transformations involving L1 2-Al 3 Zr in ternary Al-X-Zr alloys. Metall. Mater. Trans. A 36(2) (2005), pp. 311–320. doi: 10.1007/s11661-005-0304-z
  • F. Samuel, A. Samuel and H. Doty, Factors controlling the type and morphology of Cu-containing phases in 319 Al Alloy (96-30). Trans. Am. Foundrymen's Soc. 104 (1996), pp. 893–902.
  • Gobrecht, J., Ségrégation par Gravite du Fer, du Manganèse et du Chrome dans les Alliages Al-Si de Fonderie. Fonderie, 1977, No. 367, pp. 171-173.
  • M.H. Abdelaziz, H.W. Doty, S. Valtierra and F.H. Samuel, Mechanical performance of Zr-containing 354-type Al-Si-Cu-Mg cast Alloy: role of additions and heat treatment. Adv. Mater. Sci. Eng. 2018(Article ID 5715819) (2018), pp. 17 pages. https://doi.org/10.1155/2018/5715819.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.