204
Views
9
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Effective field study of the magnetism and superconductivity in idealised Ising-type X@Y60 endohedral fullerene system

Pages 1669-1693 | Received 23 Nov 2016, Accepted 25 Mar 2019, Published online: 14 Apr 2019

References

  • H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl and R.E. Smalley, C-60 – Buckminsterfullerene. Nature 318 (1985), pp. 162–163. doi: 10.1038/318162a0
  • J.R. Heath, S.C. Obrien, Q. Zhang, Y. Liu, R.F. Curl, H.W. Kroto, F.K. Tittel and R.E. Smalley, Lanthanum Complexes of Spheroidal carbon Shells. J. Am. Chem. Soc. 107 (1985), pp. 7779–7780. doi: 10.1021/ja00311a102
  • J.B. Melanko, M.E. Pearce and A.K. Salem, Nanotubes, nanorods, nanofibers, and fullerenes for nanoscale drug delivery, in Nanotechnology in Drug Delivery, M.M. de Villiers, P. Aramwit, G.S. Kwon, eds., Springer Science+Business Media, New York, 2009. p. 105.
  • R.B. Ross, C.M. Cardona, D.M. Guldi, S.G. Sankaranarayanan, M.O. Reese, N. Kopidakis, J. Peet, B. Walker, G.C. Bazan, E. Van Keuren, B.C. Holloway and M. Drees, Endohedral fullerenes for organic photovoltaic devices. Nat. Mater. 8 (2009), pp. 208–212. doi: 10.1038/nmat2379
  • W.L. Yang, Z.Y. Xu, H. Wei, M. Feng, and D. Suter, Quantum-information-processing architecture with endohedral fullerenes in a carbon nanotube. Phys. Rev. A 81 (2010), pp. 032303–032311. doi: 10.1103/PhysRevA.81.032303
  • A.R. Kortan, N. Kopylov, S. Glarum, E.M. Gyorgy, A.P. Ramirez, R.M. Fleming, F.A. Thiel and R.C. Haddon, Superconductivity at 8.4-K in Calcium-doped C-60. Nature 355 (1992), pp. 529–532. doi: 10.1038/355529a0
  • T. Ohtsuki, K. Masumoto, K. Ohno, Y. Maruyma, Y. Kawazoe, K. Sueki and K. Kikuchi, Insertion of be atoms in C-60 fullerene cages: Be@C-60. Phys. Rev. Lett. 77 (1996), pp. 3522–3524. doi: 10.1103/PhysRevLett.77.3522
  • Y. Kubozono, H. Maeda, Y. Takabayashi, K. Hiraoka, T. Nakai, S. Kashino and T. Sogabe, Extractions of Y@ C60, Ba@ C60, La@ C60, Ce@ C60, Pr@ C60, Nd@ C60, and Gd@ C60 with Aniline. J. Am. Chem. Soc. 118 (1996), pp. 6998–6999. doi: 10.1021/ja9612460
  • T. Inoue, Y. Kubozono, S. Kashino, Y. Takabayashi, K. Fujitaka, M. Hida, M. Inoue, T. Kanbara, S. Emura and T. Uruga, Electronic structure of Eu@C(60) studied by XANES and UV-VIS absorption spectra. Chem. Phys. Lett. 316 (2000), pp. 381–386. doi: 10.1016/S0009-2614(99)01309-3
  • T. Ogawa, T. Sugai and H. Shinohara, Isolation and characterization of Er@C-60. J. Am. Chem. Soc. 122 (2000), pp. 3538–3539. doi: 10.1021/ja992665a
  • A. Gromov, N. Krawez, A. Lassesson, D.I. Ostrovskii and E.E.B. Campbell, Optical properties of endohedral Li@C-60. Curr. Appl. Phys. 2 (2002), pp. 51–55. doi: 10.1016/S1567-1739(01)00101-8
  • C.F. Hermanns, M. Bernien, A. Krüger, C. Schmidt, S.T. Waßerroth, G. Ahmadi, B.W. Heinrich, M. Schneider, P.W. Brouwer, K.J. Franke, E. Weschke and W. Kuch, Magnetic coupling of Gd 3 N@ C 80 endohedral fullerenes to a substrate. Phys. Rev. Lett. 111(16) (2013), p. 167203. doi: 10.1103/PhysRevLett.111.167203
  • W.Y. Ching, M.Z. Huang, Y.N. Xu, W.G. Harter and F.T. Chan, 1st-Principles calculation of Optical-properties of C60 in the Fcc Lattice. Phys. Rev. Lett. 67 (1991), pp. 2045–2048. doi: 10.1103/PhysRevLett.67.2045
  • Y.N. Xu, M.Z. Huang and W.Y. Ching, Optical-Properties of superconducting K3c60 and Insulating K6c60. Phys. Rev. B 44 (1991), pp. 13171–13174. doi: 10.1103/PhysRevB.44.13171
  • S. Saito and A. Oshiyama, Electronic-Structure of Calcium-doped C-60. Solid State Commun. 83 (1992), pp. 107–110. doi: 10.1016/0038-1098(92)90885-D
  • K. Umemoto and S. Saito, Electronic structure of the Ba4C60 superconductor. Phys. Rev. B 61 (2000), pp. 14204–14208. doi: 10.1103/PhysRevB.61.14204
  • J. Lu, Y.S. Zhou, X.W. Zhang and X.G. Zhao, Density functional theory studies of beryllium-doped endohedral fullerene Be@C-60: on center displacement of beryllium inside the C-60 cage. Chem. Phys. Lett. 352 (2002), pp. 8–11. doi: 10.1016/S0009-2614(01)01386-0
  • S. Erkoc and L. Turker, Structural and electronic properties of endofullerenes X@C-60. J. Mol. Struc-Theochem 634 (2003), pp. 195–199. doi: 10.1016/S0166-1280(03)00343-9
  • T. Ohtsuki and K. Ohno, Formation of Po@C-60. Phys. Rev. B 72 (2005), pp. 153411–153414. doi: 10.1103/PhysRevB.72.153411
  • C. Li, J. Liu, S. Zhang, G. Lefkidis and W. Hübner, Strain assisted ultrafast spin switching on Co 2@ C 60 endohedral fullerenes. Carbon. N. Y. 87 (2015), pp. 153–162. doi: 10.1016/j.carbon.2015.02.016
  • Y. Koike, H. Suematsu, K. Higuchi and S. Tanuma, Superconductivity in Graphite-alkali metal Intercalation compounds. Physica B & C 99 (1980), pp. 503–508. doi: 10.1016/0378-4363(80)90286-7
  • T.E. Weller, M. Ellerby, S.S. Saxena, R.P. Smith and N.T. Skipper, Superconductivity in the intercalated graphite compounds C(6)Yb and C(6)Ca. Nat. Phys. 1 (2005), pp. 39–41. doi: 10.1038/nphys0010
  • E.A. Ekimov, V.A. Sidorov, E.D. Bauer, N.N. Mel'nik, N.J. Curro, J.D. Thompson and S.M. Stishov, Superconductivity in diamond. Nature 428 (2004), pp. 542–545. doi: 10.1038/nature02449
  • Y. Takano, M. Nagao, I. Sakaguchi, M. Tachiki, T. Hatano, K. Kobayashi, H. Umezawa and H. Kawarada, Superconductivity in diamond thin films well above liquid helium temperature. Appl. Phys. Lett. 85 (2004), pp. 2851–2853. doi: 10.1063/1.1802389
  • A. Kawano, H. Ishiwata, S. Iriyama, R. Okada, T. Yamaguchi, Y. Takano, and H. Kawarada, Superconductor-to-insulator transition in boron-doped diamond films grown using chemical vapor deposition. Phys. Rev. B 82 (2010), pp. 85318–85323. doi: 10.1103/PhysRevB.82.085318
  • S.P. Kelty, C.-C. Chen and C.M. Lieber, Superconductivity at 30 K in caesium-doped C60. Nature 352 (1991), pp. 223–225. doi: 10.1038/352223a0
  • A. Hebard, M. Rosseinky, R. Haddon, D. Murphy, S. Glarum, T. Palstra, A. Ramirez and A. Karton, Potassium-doped C60. Nature 350 (1991), pp. 600–601. doi: 10.1038/350600a0
  • M.J. Rosseinsky, A. Ramirez, S. Glarum, D. Murphy, R. Haddon, A. Hebard, T. Palstra, A. Kortan, S. Zahurak and A. Makhija, Superconductivity at 28 K in Rb x C 60. Phys. Rev. Lett. 66 (1991), p. 2830. doi: 10.1103/PhysRevLett.66.2830
  • D.F. Emerich and C.G. Thanos, Nanotechnology and medicine. Expert Opin Biol Th 3 (2003), pp. 655–663. doi: 10.1517/14712598.3.4.655
  • A. Fert and L. Piraux, Magnetic nanowires. J. Magn. Magn. Mater. 200 (1999), pp. 338–358. doi: 10.1016/S0304-8853(99)00375-3
  • R.H. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200 (1999), pp. 359–372. doi: 10.1016/S0304-8853(99)00347-9
  • J.E. Wegrowe, D. Kelly, Y. Jaccard, P. Guittienne and J.P. Ansermet, Current-induced magnetization reversal in magnetic nanowires. Europhys. Lett. 45 (1999), pp. 626–632. doi: 10.1209/epl/i1999-00213-1
  • G.V. Kurlyandskaya, M.L. Sanchez, B. Hernando, V.M. Prida, P. Gorria and M. Tejedor, Giant-magnetoimpedance-based sensitive element as a model for biosensors. Appl. Phys. Lett. 82 (2003), pp. 3053–3055. doi: 10.1063/1.1571957
  • D.W. Elliott and W.X. Zhang, Field assessment of nanoscale bimetallic particles for groundwater treatment. Abstr. Pap. Am. Chem. S 225 (2003), pp. U971–U971.
  • S.M. Nie and S.R. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275 (1997), pp. 1102–1106. doi: 10.1126/science.275.5303.1102
  • R.K. Soong, G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead and C.D. Montemagno, Powering an inorganic nanodevice with a biomolecular motor. Science 290 (2000), pp. 1555–1558. doi: 10.1126/science.290.5496.1555
  • H. Zeng, J. Li, J.P. Liu, Z.L. Wang and S.H. Sun, Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420 (2002), pp. 395–398. doi: 10.1038/nature01208
  • V.V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord and J. Nogues, Beating the superparamagnetic limit with exchange bias. Nature 423 (2003), pp. 850–853. doi: 10.1038/nature01687
  • Z.H. Zhong, D.L. Wang, Y. Cui, M.W. Bockrath and C.M. Lieber, Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302 (2003), pp. 1377–1379. doi: 10.1126/science.1090899
  • R. Skomski, Nanomagnetics. J. Phys.-Condens. Matter 15 (2003), pp. R841–R896. doi: 10.1088/0953-8984/15/20/202
  • J. Nogues, J. Sort, V. Langlais, S. Doppiu, B. Dieny, J.S. Munoz, S. Surinach, M.D. Baro, S. Stoyanov and Y. Zhang, Exchange bias in ferromagnetic nanoparticles embedded in an antiferromagnetic matrix. Int. J. Nanotechnol. 2 (2005), pp. 23–42. doi: 10.1504/IJNT.2005.006973
  • S.I. Denisov, T.V. Lyutyy, P. Hanggi and K.N. Trohidou, Dynamical and thermal effects in nanoparticle systems driven by a rotating magnetic field. Phys. Rev. B 74 (2006), pp. 104406-1–1104406-. doi: 10.1103/PhysRevB.74.104406
  • S.I. Denisov, T.V. Lyutyy, and P. Hanggi, Magnetization of nanoparticle systems in a rotating magnetic field. Phys. Rev. Lett. 97 (2006), pp. 227202–227206. doi: 10.1103/PhysRevLett.97.227202
  • G. Liu, N. Hoivik, K. Wang and H. Jakobsen, Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol. Energy Mater. Sol. Cells 105 (2012), pp. 53–68. doi: 10.1016/j.solmat.2012.05.037
  • M. Sebaa, T.Y. Nguyen, R.K. Paul, A. Mulchandani and H.N. Liu, Graphene and carbon nanotube-graphene hybrid nanomaterials for human embryonic stem cell culture. Mater. Lett. 92 (2013), pp. 122–125. doi: 10.1016/j.matlet.2012.10.035
  • T. Kaneyoshi, Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces. J. Magn. Magn. Mater. 321 (2009), pp. 3630–3636. doi: 10.1016/j.jmmm.2009.07.003
  • Y. Kocakaplan and E. Kantar, An effective-field theory study of hexagonal Ising nanowire: thermal and magnetic properties. Chin. Phys. B 23 (2014), pp. 046801–046808. doi: 10.1088/1674-1056/23/4/046801
  • E. Kantar and M. Keskin, Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: effective-field theory approach. J. Magn. Magn. Mater. 349 (2014), pp. 165–172. doi: 10.1016/j.jmmm.2013.08.034
  • E. Kantar and Y. Kocakaplan, Hexagonal type Ising nanowire with mixed spins: some dynamic behaviors. J. Magn. Magn. Mater. 393 (2015), pp. 574–583. doi: 10.1016/j.jmmm.2015.06.009
  • E. Kantar and M. Ertas, Influence of Frequency on the Kinetic spin-3/2 Cylindrical Ising Nanowire system in an Oscillating field. J. Supercond. Novel Magn. 28 (2015), pp. 2529–2538. doi: 10.1007/s10948-015-3072-z
  • E. Kantar and M. Ertas, Cylindrical Ising nanowire in an oscillating magnetic field and dynamic compensation temperature. Superlattice Microst 75 (2014), pp. 831–842. doi: 10.1016/j.spmi.2014.08.002
  • S. Aouini, S. Ziti, H. Labrim, and L. Bahmad, Compensation temperature in a nano-square with a core–shell structure: Monte Carlo study. Superlattice Microst. 100 (2016), pp. 246–251. doi: 10.1016/j.spmi.2016.09.032
  • N. Zaim, A. Zaim and M. Kerouad, Compensation behavior of a ferrimagnetic nanoparticle system with binary alloy shell. Solid State Commun. 246 (2016), pp. 23–28. doi: 10.1016/j.ssc.2016.07.013
  • A. Feraoun, A. Zaim and M. Kerouad, Monte Carlo study of a mixed spin (1,3/2) ferrimagnetic nanowire with core/shell morphology. Physica B 445 (2014), pp. 74–80. doi: 10.1016/j.physb.2014.03.071
  • N. Zaim, A. Zaim and M. Kerouad, Monte Carlo study of the random magnetic field effect on the phase diagrams of a spin-1 cylindrical nanowire. J. Alloy Compd. 663 (2016), pp. 516–523. doi: 10.1016/j.jallcom.2015.12.145
  • R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun and L. Bahmad, Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure. Physica B 472 (2015), pp. 19–24. doi: 10.1016/j.physb.2015.05.010
  • R. Masrour, L. Bahmad, M. Hamedoun, A. Benyoussef and E.K. Hlil, Magnetic properties of Ni/Au core/shell studied by Monte Carlo simulations. Phys. Lett. A 378 (2014), pp. 276–279. doi: 10.1016/j.physleta.2013.11.012
  • R. Masrour, A. Jabar, A. Benyoussef and M. Hamedoun, Spin interactions in molecular Nanomagnets Mn12 Acetate shell-core. J. Supercond. Nov. Magn. 29 (2016), pp. 193–198. doi: 10.1007/s10948-015-3242-z
  • W. Jiang, X.-X. Li, L.-M. Liu, J.-N. Chen and F. Zhang, Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn. Magn. Mater. 353 (2014), pp. 90–98. doi: 10.1016/j.jmmm.2013.10.028
  • L.B. Drissi, S. Zriouel and L. Bahmad, Monte Carlo study of magnetic behavior of core– shell nanoribbon. J. Magn. Magn. Mater. 374 (2015), pp. 639–646. doi: 10.1016/j.jmmm.2014.08.094
  • G. Treglia, B. Legrand and F. Ducastelle, Segregation and ordering at surfaces of transition metal alloys: the tight-binding Ising model. Europhys. Lett. 7 (1988), pp. 575–580. doi: 10.1209/0295-5075/7/7/001
  • A. Bobak and J. Dely, The effect of a single-ion anisotropy on the phase diagram of a mixed ferro-ferrimagnetic ternary alloy. Physica A 341 (2004), pp. 281–298. doi: 10.1016/j.physa.2004.04.117
  • E. Albayrak, The mixed-spin ternary-alloy in the form of AB p C 1-p on the Bethe lattice. J. Magn. Magn. Mater. 323 (2011), pp. 992–996. doi: 10.1016/j.jmmm.2010.10.048
  • R. Masrour, A. Jabar, E.K. Hlil, M. Hamedoun, A. Benyoussef, A. Hourmatallah, A. Rezzouk, K. Bouslykhane and N. Benzakour, Investigation on electronic and magnetic properties of Mn 2 NiAl by ab initio calculations and Monte Carlo simulations. J. Magn. Magn. Mater. 428 (2017), pp. 12–16. doi: 10.1016/j.jmmm.2016.12.004
  • E. Vatansever, U. Akinci and H. Polat, Non-equilibrium phase transition properties of disordered binary ferromagnetic alloy. J. Magn. Magn. Mater. 389 (2015), pp. 40–47. doi: 10.1016/j.jmmm.2015.04.042
  • I.T. Padilha, J. Ricardo de Sousa, M.A. Neto, O.R. Salmon and J.R. Viana, Thermodynamics properties of copper-oxide superconductors described by an Ising frustrated model. Physica A 392 (2013), pp. 4897–4904. doi: 10.1016/j.physa.2013.06.044
  • E. Kantar, Superconductivity-like phenomena in an ferrimagnetic endohedral fullerene with diluted magnetic surface. Solid State Commun. 263 (2017), pp. 31–37. doi: 10.1016/j.ssc.2017.07.006
  • R. Honmura and T. Kaneyoshi, Contribution to the new type of effective-field theory of the Ising model. J. Phys. C: Solid State Phys. 12 (1979), p. 3979. doi: 10.1088/0022-3719/12/19/016
  • T.T. Kaneyoshi, I.P. Fittipaldi, R. Honmura and T. Manabe, New Correlated-effective-field theory in the Ising-model. Phys. Rev. B 24 (1981), pp. 481–484. doi: 10.1103/PhysRevB.24.481
  • C.T. Fleaca, I. Morjan, R. Alexandrescu, F. Dumitrache, I. Soare, L. Gavrila-Florescu, F. Le Normand and A. Derory, Magnetic properties of core–shell catalyst nanoparticles for carbon nanotube growth. Appl. Surf. Sci. 255 (2009), pp. 5386–5390. doi: 10.1016/j.apsusc.2008.10.078
  • B.Z. Mi, H.Y. Wang and Y.S. Zhou, Theoretical investigations of magnetic properties of ferromagnetic single-walled nanotubes. J. Magn. Magn. Mater. 322 (2010), pp. 952–958. doi: 10.1016/j.jmmm.2009.11.030
  • A.A. Abrikosov, On the magnetic properties of superconductors of the second group. Sov. Phys. J. Exp. Theor. Phys. 5 (1957), pp. 1174–1182.
  • B. Rosenstein and D.P. Li, Ginzburg-Landau theory of type II superconductors in magnetic field. Rev. Mod. Phys. 82 (2010), pp. 109–168. doi: 10.1103/RevModPhys.82.109
  • I. Pinera, C.M. Cruz, Y. Abreu and A. Leyva, Monte Carlo simulation study of the positron contribution to displacements per atom production in YBCO superconductors. Nucl. Instrum. Methods B 266 (2008), pp. 4899–4902. doi: 10.1016/j.nimb.2008.08.002
  • M.S. Li, Paramagnetic Meissner effect and related dynamical phenomena. Phys. Rep. 376 (2003), pp. 133–223. doi: 10.1016/S0370-1573(02)00635-X
  • E. Demler, W. Hanke and S.C. Zhang, SO(5) theory of antiferromagnetism and superconductivity. Rev. Mod. Phys. 76 (2004), pp. 909–974. doi: 10.1103/RevModPhys.76.909
  • A. Avella, F. Mancini, F.P. Mancini, and E. Plekhanov, Emery vs. Hubbard model for cuprate superconductors: a composite operator method study. Eur. Phys. J. B 86 (2013), pp. 265–284. doi: 10.1140/epjb/e2013-40115-3
  • J. Spalek, Theory of Unconventional superconductivity in Strongly Correlated systems: Real Space Pairing and Statistically Consistent mean-field theory - in Perspective. Acta Phys. Pol., A 121 (2012), pp. 764–784. doi: 10.12693/APhysPolA.121.764
  • N. Şarlı, Superconductor core effect of the Body Centered Orthorhombic Nanolattice structure. J. Supercond. Novel Magn. 28 (2015), pp. 2355–2363. doi: 10.1007/s10948-015-3061-2
  • N. Şarlı, Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube. Physica B 411 (2013), pp. 12–25. doi: 10.1016/j.physb.2012.08.046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.