83
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Theoretical study of the microscopic Doppler effect for energetic material

&
Pages 1763-1786 | Received 02 Apr 2018, Accepted 30 Mar 2019, Published online: 14 Apr 2019

References

  • A.K. Sikder and N. Sikder, A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications, J. Hazard. Mater. 112 (2004), pp. 1–15. doi: 10.1016/j.jhazmat.2004.04.003
  • C. Zhang, Computational investigation on the desensitizing mechanism of graphite in explosives versus mechanical stimuli: compression and glide, J. Phys. Chem. B 111 (2007), pp. 6208–6213. doi: 10.1021/jp070918d
  • C. Zhang, Understanding the desensitizing mechanism of olefin in explosives versus external mechanical stimuli, J. Phys. Chem. C 114 (2010), pp. 5068–5072. doi: 10.1021/jp910883x
  • L. Zhang, S.V. Zybin, A.C.T. van Duin and W.A. Goddard III, Modeling high rate impact sensitivity of perfect RDX and HMX crystals by ReaxFF reactive dynamics, J. Energ. Mater. 28 (2010), pp. 92–127. doi: 10.1080/07370652.2010.504682
  • T. Zhou, S.V. Zybin, Y. Liu, F. Huang and W.A. Goddard III, Anisotropic shock sensitivity for β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine energetic material under compressive-shear loading from ReaxFF-lg reactive dynamics simulations, J. Appl. Phys. 111 (2012), p. 124904.
  • M.W. Chen, S. You, K.S. Suslick and D.D. Dlott, Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy, Rev. Sci. Instrum. 85 (2014), p. 023705.
  • S. You, M.W. Chen, D.D. Dlott and K.S. Suslick, Ultrasonic hammer produces hot spots in solids, Nat. Commun. 6 (2015), p. 6581. doi: 10.1038/ncomms7581
  • Y. Long and J. Chen, An investigation of the hot spot formation mechanism for energetic material, J. Appl. Phys. 122 (2017), p. 175105. doi: 10.1063/1.4996385
  • D. Bedrov, G.D. Smith and T.D. Sewell, Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations, Chem. Phys. Lett. 324 (2000), pp. 64–68. doi: 10.1016/S0009-2614(00)00559-5
  • M.P. Kroonblawd and T.D. Sewell, Predicted anisotropic thermal conductivity for crystalline 1,3,5-triamino-2,4,6-trinitobenzene (TATB): temperature and pressure dependence and sensitivity to intramolecular force field terms, Propellants Explos. Pyrotech. 41 (2016), pp. 502–513. doi: 10.1002/prep.201500247
  • F. Müller-Plathe, Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids, Phys. Rev. E 59 (1999), pp. 4894–4898. doi: 10.1103/PhysRevE.59.4894
  • D. Bedrov, G.D. Smith and T.D. Sewell, Temperature-dependent shear viscosity coefficient of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): a molecular dynamics simulation study, J. Chem. Phys. 112 (2000), pp. 7203–7208. doi: 10.1063/1.481285
  • K. Parlinski, Z.Q. Li and Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2, Phys. Rev. Lett. 78 (1997), pp. 4063–4066. doi: 10.1103/PhysRevLett.78.4063
  • A. Togo, F. Oba and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78 (2008), p. 134106. http://fropho.sourceforge.net doi: 10.1103/PhysRevB.78.134106
  • A. Togo, L. Chaput and I. Tanaka, Distributions of phonon lifetimes in Brillouin zones, Phys. Rev. B 91 (2015), p. 094306. https://atztogo.github.io/phono3py/ doi: 10.1103/PhysRevB.91.094306
  • K. Esfarjani and H.T. Stokes, Method to extract anharmonic force constants from first principles calculations, Phys. Rev. B 77 (2008), p. 144112. doi: 10.1103/PhysRevB.77.144112
  • H.H. Cady, A.C. Larson and D.T. Cromer, The crystal structure of α-HMX and a refinement of the structure of β-HMX, Acta Cryst. 16 (1963), pp. 617–623. doi: 10.1107/S0365110X63001651
  • C.S. Choi and H.P. Boutin, A study of the crystal-structure of β-crclotetramethylene tetranitramine by neutron diffraction, Acta Cryst. B 26 (1970), pp. 1235–1240. doi: 10.1107/S0567740870003941
  • P. Main, R.E. Cobbledick and R.W.H. Small, Structure of the fourth form of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (γ-HMX), 2C4H8N8O8⋅0.5H2O, Acta Cryst. C 41 (1985), pp. 1351–1354. doi: 10.1107/S0108270185007739
  • R.E. Cobbledick and R.W.H. Small, The crystal structure of the δ-form of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (δ-HMX), Acta Cryst. B 30 (1974), pp. 1918–1922. doi: 10.1107/S056774087400611X
  • T.R. Gibbs and A. Popolato, eds., LASL Explosive Property Data, University of California Press, Berkeley, 1980.
  • H.V. Brand, R.L. Rabie, D.J. Funk, I. Diaz-Acosta, P. Pulay and T.K. Lippert, Theoretical and experimental study of the vibrational spectra of the α, β and δ phases of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), J. Phys. Chem. B 106 (2002), pp. 10594–10604. doi: 10.1021/jp020909z
  • Y. Long and J. Chen, Theoretical study of phonon density of states, thermodynamic properties and phase transitions for HMX, Philos. Mag. 94 (2014), pp. 2656–2677. doi: 10.1080/14786435.2014.927598
  • Z. Iqbal, S. Bulusu and J.R. Autera, Vibrational spectra of β-cyclotetramethylene tetranitramine and some of its isotopic isomers, J. Chem. Phys. 60 (1974), pp. 221–230. doi: 10.1063/1.1680772
  • F. Goetz, T.B. Brill and J.R. Ferraro, Pressure dependence of the Raman and infrared spectra of α-, β-, γ-, and δ-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, J. Phys. Chem. 82 (1978), pp. 1912–1917. doi: 10.1021/j100506a011
  • F. Goetz and T.B. Brill, Laser Raman spectra of α-, β-, γ-, and δ-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and their temperature dependence, J. Phys. Chem. 83 (1979), pp. 340–346. doi: 10.1021/j100466a008
  • L.L. Stevens, J.J. Haycraft and C.J. Eckhardt, Single-Crystal, Polarized Raman-Scattering Study of the Molecular and Lattice Vibrations for the Energetic Material Cyclotetramethylenetetranitramine, β-Polymorph (β-HMX), Cryst. Growth Des. 5 (2005), pp. 2060–2065. doi: 10.1021/cg050219v
  • C.T. Konek, B.P. Mason, J.P. Hooper, C.A. Stoltz and J. Wilkinson, Terahertz absorption spectra of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) polymorphs, Chem. Phys. Lett. 489 (2010), pp. 48–53. doi: 10.1016/j.cplett.2010.02.042
  • G.D. Smith and R.K. Bharadwaj, Quantum chemistry based force field for simulations of HMX, J. Phys. Chem. B 103 (1999), pp. 3570–3575. doi: 10.1021/jp984599p
  • D. Bedrov, C. Arragari, G.D. Smith, T.D. Sewell, R. Menikoff and J.M. Zaug, Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field, J. Comput.-Aid. Mater. Des. 8 (2001), pp. 77–85. doi: 10.1023/A:1020046817543
  • T.D. Sewell, R. Menikoff, D. Bedrow and G.D. Smith, A molecular dynamics simulation study of elastic properties of HMX, J. Chem. Phys. 119 (2003), pp. 7417–7426. doi: 10.1063/1.1599273
  • A.C.T. van Duin, S. Dasgupta, F. Lorant and W.A. Goddard III, ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A 105 (2001), pp. 9396–9409. doi: 10.1021/jp004368u
  • A. Strachan, A.C.T. van Duin, D. Chakraborty, S. Dasgupta and W.A. Goddard III, Shock waves in high-energy materials: the initial chemical events in nitramine RDX, Phys. Rev. Lett. 91 (2003), p. 098301. doi: 10.1103/PhysRevLett.91.098301
  • K. Chenoweth, A.C.T. van Duin and W.A. Goddard III, Reaxff reactive force field for molecular dynamics simulations of hydrocarbon oxidation, J. Phys. Chem. A 112 (2008), pp. 1040–1053. doi: 10.1021/jp709896w
  • L. Zhang, S.V. Zybin, A.C.T. van Duin, S. Dasgupta, W.A. Goddard III and E.M. Kober, Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations, J. Phys. Chem. A 113 (2009), pp. 10619–10640. doi: 10.1021/jp901353a
  • T. Zhou, H. Song, Y. Liu and F. Huang, Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation, Phys. Chem. Chem. Phys. 16 (2014), pp. 13914–13931. doi: 10.1039/c4cp00890a
  • J.J. Xiao, H. Huang, J.S. Li, H. Zhang, W. Zhu and H.M. Xiao, A molecular dynamics study of interface interactions and mechanical properties of HMX-based PBXs with PEG and HTPB, J. Mol. Struct.: THEOCHEM 851 (2008), pp. 242–248. doi: 10.1016/j.theochem.2007.11.021
  • L. Qiu and H.M. Xiao, Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs, J. Hazard. Mater. 164 (2009), pp. 329–336. doi: 10.1016/j.jhazmat.2008.08.030
  • R. Menikoff, Pore collapse and hot spots in HMX, AIP Conf. Proc. 706 (2004), pp. 393–396. doi: 10.1063/1.1780261
  • R. Menikoff, Detonation wave profile in PBX 9501, Combust. Theory Model. 10 (2006), pp. 1003–1021. doi: 10.1080/13647830600851754
  • J. Zeng, Quantum Mechanics, Vol. I, Science Press, Beijing, 2010.
  • G. Kresse and J. Furthmüller, VASP 4.6 Guide, Universität Wien, 2007. http://cms.mpi.univie.ac.at/VASP/
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994), pp. 17953–17979. doi: 10.1103/PhysRevB.50.17953
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999), pp. 1758–1775. doi: 10.1103/PhysRevB.59.1758
  • J. Klimeš, D.R. Bowler and A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys.: Condens. Matter 22 (2010), p. 022201.
  • J. Klimeš, D.R. Bowler and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83 (2011), p. 195131. doi: 10.1103/PhysRevB.83.195131
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192. doi: 10.1103/PhysRevB.13.5188
  • A.H. Macdonald, Comment on special points for Brillouin-zone integrations, Phys. Rev. B 18 (1978), pp. 5897–5899. doi: 10.1103/PhysRevB.18.5897
  • Y. Long and J. Chen, A theoretical study of the stress relaxation in HMX on the picosecond time scale, Model. Simul. Mater. Sci. Eng. 23 (2015), p. 085001. doi: 10.1088/0965-0393/23/8/085001
  • Q. Peng, F. Rahul, G. Wang, G.R. Liu and S. De, Structures, mechanical properties, equations of state, and electronic properties of β-HMX under hydrostatic pressures: a DFT-D2 study, Phys. Chem. Chem. Phys. 16 (2014), pp. 19972–19983.
  • T.D. Sewell, D. Bedrov, R. Menikoff and G.D. Smith, Elastic properties of HMX, AIP Conf. Proc. 620 (2002), pp. 399–402. doi: 10.1063/1.1483562
  • B. Sun, J. Winey, Y.M. Gupta and D.E. Hooks, Determination of second-order elastic constants of cyclotetramethylene tetranitramine (β-HMX) using impulsive stimulated thermal scattering, J. Appl. Phys. 106 (2009), p. 053505.
  • D.C. Wallace, Solid State Physics: Advances in Research and Applications, Volume 25: Thermoelastic Theory of Stressed Crystals and Higher-Order Elastic Constants, Academic Press, New York (1970), p. 301.
  • Y. Long and J. Chen, Theoretical study of the phonon-phonon scattering mechanism and the thermal conductive coefficients for energetic material, Philos. Mag. 97 (2017), pp. 2575–2595, appendix. doi: 10.1080/14786435.2017.1343962
  • Y. Long and J. Chen, Theoretical study of the phonon spectrum, phonon refraction and thermodynamic properties for explosive/additive interfaces, Model. Simul. Mater. Sci. Eng. 26 (2018), p. 015002. doi: 10.1088/1361-651X/aa944d
  • Y. Long and J. Chen, Theoretical study of the phonon states and thermodynamic properties on surfaces of energetic material, Surf. Sci. 677 (2018), pp. 26–33. doi: 10.1016/j.susc.2018.05.017
  • W.X. Li, One-Dimensional Nonsteady Flow and Shock Waves, National Defence Industry Press, Beijing, 2003.
  • S.P. Marsh, ed., LASL Shock Hugoniot Data, University of California Press, Berkeley, 1980.
  • I.N. Sneddon, Fourier Transforms, Appendix C, Dover Publications, Inc., New York (1995), p. 522.
  • Z.H. He, J. Chen, G.F. Ji, L.M. Liu, W.J. Zhu and Q. Wu, Dynamic responses and initial decomposition under shock loading: a DFTB calculation combined with MSST method for β-HMX with molecular vacancy, J. Phys. Chem. B 119 (2015), pp. 10673–10681. doi: 10.1021/acs.jpcb.5b05081
  • Z.C. Wang, Thermodynamics · Statistic Mechanics, Higher Education Press, Beijing, 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.