199
Views
3
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Magnetic orders and electronic behaviours of new chalcogenides Cu3MnCh4 (Ch = S, Se and Te): An ab initio study

Pages 1941-1955 | Received 17 Oct 2018, Accepted 20 Mar 2019, Published online: 17 Apr 2019

References

  • F.J. Disalvo, Solid-state chemistry: A rediscovered chemical frontier. Science 247 (1990), pp. 649–655. doi: 10.1126/science.247.4943.649
  • H. Nakanishi, S. Endo and I. Taizo, On the electrical and thermal properties of the ternary chalcogenides A2IBIVX3, AIBVX2 and A3IBVX4 (AI=Cu; BIV=Ge, Sn; BV=Sb; X = S, Se, Te) II. Electrical and thermal properties of Cu3SbSe4. Jpn. J. Appl. Phys. 8 (1969), pp. 443–449. doi: 10.1143/JJAP.8.443
  • J. Li, H.Y. Guo, D.M. Proserpio and A. Sironi, Exploring tellurides: Synthesis and characterization of new binary, ternary, and quaternary compounds. J. Solid State Chem 117 (1995), pp. 247–255. doi: 10.1006/jssc.1995.1270
  • R.W. Miles, G. Zoppi and I. Forbes, Inorganic photovoltaic cells. Mater. Today 10 (2007), pp. 20–27. doi: 10.1016/S1369-7021(07)70275-4
  • E.J. Skoug, J.D. Cain and D.T. Morelli, Structural effects on the lattice thermal conductivity of ternary antimony- and bismuth-containing chalcogenide semiconductors. Appl. Phys. Lett 96 (2010), pp. 181905. doi: 10.1063/1.3425886
  • D.J. Temple, A.B. Kehoe, J.P. Allen, G.W. Watson, D.O. Scanlon and E.S. Geometry, And bonding in CuMCh2 (M = Sb, Bi; Ch = S, Se): Alternative solar cell absorber materials? J. Phys. Chem. C 116 (2012), pp. 7334–7340. doi: 10.1021/jp300862v
  • H. Katagiri, Cu2znsns4 thin film solar cells. Thin Solid Films 480–481 (2005), pp. 426–432. doi: 10.1016/j.tsf.2004.11.024
  • S.Y. Chen, A. Walsh, J.H. Yang, X.G. Gong, L. Sun, P.X. Yang, J.H. Chu and S.H. Wei, Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells. Phys. Rev. B 83 (2011), pp. 125201. doi: 10.1103/PhysRevB.83.125201
  • R. Nitsche and P. Wild, Crystal growth and electro-optic effect of copper-tantalum-selenide, Cu3TaSe4. J. Appl. Phys. 38 (1967), pp. 5413–5414. doi: 10.1063/1.1709339
  • F. Zwick, H. Berger, M. Grioni, G. Margaritondo, L. Forro, J. La Veigne, D.B. Tanner and M. Onellion, Coexisting one-dimensional and three-dimensional spectral signatures in TaTe4. Phys. Rev. B 59 (1999), pp. 7762–7766. doi: 10.1103/PhysRevB.59.7762
  • N. Shannon and R. Joynt, The spectral, structural and transport properties of the pseudogap system (TaSe4)2I. Solid State Commun. 115 (2000), pp. 411–415. doi: 10.1016/S0038-1098(00)00204-0
  • M.L. Doublet, S. Remy and F. Lemoigno, Density functional theory analysis of the local chemical bonds in the periodic tantalum dichalcogenides TaX2 (X = S, Se, Te). J. Chem. Phys 113 (2000), pp. 5879–5890. doi: 10.1063/1.1290023
  • S. Debus and B. Harbrecht, Nbxta7−xS2 (x = 2.73), a structurally distinct (Nb,Ta)-rich sulfide obtaining its stability from the dissimilar cohesive energy of the two metals. J. Alloys Compd 338 (2002), pp. 253–260. doi: 10.1016/S0925-8388(02)00239-6
  • Y. Aiura, H. Bando, R. Kitagawa, S. Maruyama, Y. Nishihara, K. Horiba, M. Oshima, O. Shiino and M. Nakatake, Electronic structure of layered 1 T – TaSe2 in commensurate charge-density-wave phase studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 68 (2003), pp. 073408. doi: 10.1103/PhysRevB.68.073408
  • K.O. Klepp and D. Gurtner, Crystal structure of tricopper tetraselenidovanadate (V), Cu3VSe4. Z. Krystallogr. NCS 215 (2000), pp. 4.
  • M. Kars, A. Rebbah and H. Rebbah, Cu3nbs4. Acta Cryst. E61 (2005), pp. i180–i181.
  • Y.J. Lu and J.A. Ibers, Synthesis and characterization of Cu3NbSe4 and KCu2TaSe4. J. Solid State Chem 107 (1993), pp. 58–62. doi: 10.1006/jssc.1993.1323
  • G.E. Delgado, A.J. Mora, S. Durán, M. Munoz and P. Grima-Gallardo, Structural characterization of the ternary compound Cu3TaSe4. J. Alloys Compd 439 (2007), pp. 346–349. doi: 10.1016/j.jallcom.2006.08.232
  • A. Erkisi and G. Surucu, The electronic and elasticity properties of new half-metallic chalcogenides Cu3TMCh4 (TM = Cr, Fe and Ch = S, Se, Te): an ab initio study. Philos. Mag 99 (2019), pp. 513–529. doi: 10.1080/14786435.2018.1546960
  • L. Pauling and R. Hultgren, The crystal structure of sulvanite, Cu3VS4. Z. Kristallogr. 84 (1932), pp. 204–212.
  • C. Mujica, G. Carvajal, J. Llanos and O. Wittke, Redetermination of the crystal structure of copper(I) tetrathiovanadate (sulvanite), Cu3VS4. Z. Kristallogr. NCS 213 (1998), pp. 12.
  • K.H. Schmidt, A. Müller, J. Bouwma and F. Jellinek, Übergangsmetall-chalklogen-verbindungen IR- und Raman-spektren von Cu3MX4 (M = V, Nb, Ta; X = S, Se). J. Mol. Struct 11 (1972), pp. 275–282. doi: 10.1016/0022-2860(72)80012-7
  • A. Mueller and W. Seivert, Über Verbindungen des Typs Cu3MSxSe4−x(M = Nb, Ta). Bestimmung der Kristallstruktur von Cu3TaSSe3. Z. Anorg. Allg. Chem. 406 (1974), pp. 80–91. doi: 10.1002/zaac.19744060112
  • D. Petritis, G. Martinez, C. Levy-Clement and O. Gorochov, Investigation of the vibronic properties of Cu3VS4, Cu3NbS4 and Cu3TaS4 compounds. Phys. Rev. B 23 (1981), pp. 6773–6786. doi: 10.1103/PhysRevB.23.6773
  • K. Nakamura, Y. Kato, T. Akiyama, T. Ito and A.J. Freeman, Half-metallic exchange bias ferromagnetic/antiferromagnetic interfaces in transition-metal chalcogenides. Phys. Rev. Lett 96 (2006), pp. 047206. doi: 10.1103/PhysRevLett.96.047206
  • K. Nakamura, T. Akiyama, T. Ito and A.J. Freeman, Magnetic structures and half-metallicity at zincblende ferromagnetic/antiferromagnetic interfaces: Role of tetragonal distortions. J. Magn. Magn. Mater 310 (2007), pp. 2186–2188. doi: 10.1016/j.jmmm.2006.10.753
  • K. Nakamura, T. Akiyama, T. Ito and A.J. Freeman, Half-metallicity at ferromagnetic/antiferromagnetic interfaces in zincblende transition-metal chalcogenides: A full-potential linearized augmented plane-wave study within LDA + U. J. Appl. Phys 103 (2008), pp. 07C901. doi: 10.1063/1.2828521
  • I. Han, Z. Jianga, C. dela Cruz, H. Zhang, H. Sheng, A. Bhutani, D.J. Miller and D.P. Shoemaker, Accessing magnetic chalcogenides with solvothermal synthesis: KFeS2 and KFe2S3. J. Solid State Chem 260 (2018), pp. 1–6. doi: 10.1016/j.jssc.2018.01.003
  • M. Zhou, W. Yin, F. Liang, A. Mar, Z. Lin, J. Yao and Y. Wu, Na2MnGe2Se6: A new Mn-based antiferromagnetic chalcogenide with large Mn … Mn separation. J. Mater. Chem. C 4 (2016), pp. 10812. doi: 10.1039/C6TC03825E
  • K. Feng, W. Wang, R. He, L. Kang, W. Yin, Z. Lin, J. Yao, Y. Shi and Y. Wu, K2fege3se8: A new antiferromagnetic iron selenide. Inorg. Chem 52 (2013), pp. 2022–2028. doi: 10.1021/ic302394e
  • A.B. Kehoe, D.J. Temple, G.W. Watson and D.O. Scanlon, Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: Insights from theory. Phys. Chem. Chem. Phys 15 (2013), pp. 15477–15484. doi: 10.1039/c3cp52482e
  • A.B. Kehoe, D.O. Scanlon and G.W. Watson, The electronic structure of sulvanite structured semiconductors Cu3MCh4 (M = V, Nb, Ta; Ch = S, Se, Te): Prospects for optoelectronic applications. J. Mater. Chem. C 3 (2015), pp. 12236–12244. doi: 10.1039/C5TC02760H
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47 (1993), pp. 558–561. doi: 10.1103/PhysRevB.47.558
  • G. Kresse and J. Furthmuller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci 6 (1996), pp. 15–50. doi: 10.1016/0927-0256(96)00008-0
  • P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50 (1994), pp. 17953–17979. doi: 10.1103/PhysRevB.50.17953
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140 (1965), pp. A1133–A1138. doi: 10.1103/PhysRev.140.A1133
  • P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964), pp. B864–B871. doi: 10.1103/PhysRev.136.B864
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev.B 13 (1976), pp. 5188–5192. doi: 10.1103/PhysRevB.13.5188
  • R.W.G. Wyckoff, Crystal Structures, Wiley, New York, 19631.
  • F. Han, A Modern Course in the Quantum Theory of Solids, World Scientific, Singapore, 2013.
  • E. Zhao and Z. Wu, Electronic and mechanical properties of 5d transition metal mononitrides via first principles. J. Solid State Chem 181 (2008), pp. 2814–2827. doi: 10.1016/j.jssc.2008.07.022
  • P. Vinet, J.H. Rose, J. Ferrante and J.R. Smith, Universal features of the equation of state of solids. J. Phys.: Condens. Matter 1 (1989), pp. 1941.
  • M.B. Jungfleisch, W. Zhang and A. Hoffmann, Perspectives of antiferromagnetic spintronics. Phys. Lett. A 382 (2018), pp. 865–871. doi: 10.1016/j.physleta.2018.01.008
  • Y.Y. Wang, C. Song, J.Y. Zhang and F. Pan, Spintronic materials and devices based on antiferromagnetic metals. Prog. Nat. Sci. Mater 27 (2017), pp. 208–216. doi: 10.1016/j.pnsc.2017.03.008
  • J. Kudrnovsky, I. Turek, V. Drchal, F. Maca, P. Weinberger and P. Bruno, Exchange interactions in III-V and group-IV diluted magnetic semiconductors. Phys. Rev. B 69 (2004), pp. 115208. doi: 10.1103/PhysRevB.69.115208
  • S. Khatta, S.K. Tripathi and S. Prakash, First principles study of the electronic and magnetic properties of Zn1-xCoxSe alloys. Solid State Commun. 287 (2019), pp. 48–53. doi: 10.1016/j.ssc.2018.10.010
  • A. Laref, E. Şaşıoğlu and I. Galanakis, Exchange interactions, spin waves, and Curie temperature in zincblende half-metallic sp-electron ferromagnets: The case of CaZ (Z = N, P, As, Sb). J. Phys. Condens. Matter 23 (2011), pp. 296001. doi: 10.1088/0953-8984/23/29/296001
  • S. Khatta, S.K. Tripathi and S. Prakash, First-principles study on half-metallic ferromagnetic properties of Zn1−xVxSe ternary alloys. Appl. Phys. A 123 (2017), pp. 582. doi: 10.1007/s00339-017-1199-4
  • S. Khatta, S.K. Tripathi and S. Prakash, Electronic and magnetic properties of Zn1−xFexSe alloys. J. Solid State Chem 256 (2017), pp. 116–123. doi: 10.1016/j.jssc.2017.08.037
  • M.B. Baysal, G. Surucu, E. Deligoz and H. Ozısık, The effect of hydrogen on the electronic, mechanical and phonon properties of LaMgNi4 and its hydrides for hydrogen storage applications. Int. J. Hydrogen Energy 43 (2018), pp. 23397–23408. doi: 10.1016/j.ijhydene.2018.10.183
  • A. Gencer and G. Surucu, Electronic and lattice dynamical properties of Ti2SiB MAX phase. Mater. Res. Express 5 (2018), pp. 076303. doi: 10.1088/2053-1591/aace7f

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.