534
Views
56
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A statistical model of fatigue failure incorporating effects of specimen size and load amplitude on fatigue life

&
Pages 2089-2125 | Received 11 Oct 2018, Accepted 10 Apr 2019, Published online: 01 May 2019

References

  • W.-S. Lei, A framework for statistical modelling of plastic yielding initiated cleavage fracture of structural steels, Philos. Mag. 96 (2016), pp. 3586–3631.
  • W.-S. Lei, A generalized weakest-link model for size effect on strength of quasi-brittle materials. J. Mater. Sci 53 (2018), pp. 1227–1245.
  • G. Qian, W.-S. Lei, M. Niffenegger and V.F. González-Albuixech, On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels. Philos. Mag 98 (2018), pp. 959–1004.
  • S. Shimizu, K. Tsuchiya and K. Tosha, Probabilistic stress-life (P-S-N) study on bearing steel using alternating torsion life test. Tribology Trans 52 (2009), pp. 807–816. doi:10.1080/10402000903125345.
  • Y. Hong and C. Sun, The nature and the mechanism of crack initiation and early growth for very-high-cycle fatigue of metallic materials – an overview. Theor. Appl. Fract. Mech 92 (2017), pp. 331–350.
  • G. Qian, C. Zhou and Y. Hong, Experimental and theoretical investigation of environmental media on very-high-cycle fatigue behavior for a structural steel. Acta Mater 59 (2011), pp. 1321–1327.
  • A. Pineau, Development of the local approach to fracture over the past 25 years: theory and applications. Int. J. Fract 138 (2006), pp. 139–166.
  • W.-S. Lei, A cumulative failure probability model for cleavage fracture in ferritic steels. Mech. Mater 93 (2016), pp. 184–198.
  • W.-S. Lei, On the statistical modeling of cleavage fracture toughness of structural steels. Mech. Mater 101 (2016), pp. 81–92.
  • G. Qian, Y. Cao, M. Niffenegger, Y. Chao and W. Wu, Comparison of constraint analyses with global and local approaches under uniaxial and biaxial loadings. Eur. J. Mech. / A Solids 69 (2018), pp. 135–146.
  • F.A. Bastenaire, New method for the statistical evaluation of constant stress amplitude fatigue-test results. Probabilistic aspects of fatigue. ASTM STP 511. ASTM, 1972, 3–28.
  • G. Schweiger and K. Heckel, Size effect in randomly loaded specimens. Int. J. Fatigue 8 (1986), pp. 231–234.
  • I. Chantier, V. Bobet, R. Billardon and F. Hild, A probabilistic approach to predict the very high-cycle fatigue behavior of spherical graphite cast iron structures. Fatigue Fract. Engng. Mater. Struct 23 (2000), pp. 173–180.
  • J. Schijve, Statistical distribution of functions and fatigue of structures. Int. J. Fatigue 27 (2005), pp. 1031–1039.
  • T. Delahay and T. Palin-Luc, Estimation of the fatigue strength distribution in high-cycle multiaxial fatigue taking into account the stress-strain gradient effect. Int. J. Fatigue 28 (2006), pp. 474–484.
  • E. Castillo, M. Lopez-Aenlle, A. Rambo, A. Fernandez-Canteli, R. Kieselbach and V. Esslinger, Specimen length effect on parameter estimation in modeling fatigue strength by Weibull distribution. Int. J. Fatigue 28 (2006), pp. 1047–1058.
  • G. Bigley R. F., J.C. Stover, S.M. Hazelwood, S.J. Fyhrie, D.P. Martin and R. B, Volume effects on fatigue life of equine cortical bone. J. Biomech 40 (2007), pp. 3548–3554.
  • A. Karolczuk, The probabilistic model of fatigue life estimation for structural elements with heterogeneous stress distribution, The Arch. Mech. Eng. LV(3) (2008), pp. 213–225.
  • E. Castillo, A. Fernandez-Canteli, R. Koller, M.L. Ruiz-Ripoll and A. Garcia, A statistical fatigue model covering the tension and compression Wohler fields. Probabilistic Eng. Mech 24 (2009), pp. 199–209.
  • M. Shirani and G. Harkegard, Fatigue life distribution and size effect in ductile cast iron for wind turbine components. Eng. Failure Analysis 18 (2011), pp. 12–24.
  • E. Pessard, F. Morel, A. Morel and D. Bellett, Modeling the role of non-metallic inclusions on the anisotropic fatigue behavior of forged steel. Int. J. Fatigue 33 (2011), pp. 568–577.
  • O.A. Okeyoyin and G.M. Owolabi, Application of weakest link probabilistic framework for fatigue notch factor to turbine engine materials. World J. Mech 3 (2013), pp. 237–244.
  • Y.X. Zhao and H.B. Liu, Weibull modeling of the probabilistic S-N curves for rolling contact fatigue. Int. J. Fatigue 66 (2014), pp. 47–54.
  • D. Sandberg and M. Olsson, An investigation of the prediction accuracy for volume based HF models using scaled geometries and scaled loading. Int. J. Fatigue 82 (2016), pp. 317–324.
  • J. Correia, N. Apetre, A. Arcari, A. De Jesus, M. Muniz-Calvente, R. Calcada, F. Berto and A. Fernandez-Canteli, Generalized probabilistic model allowing for various fatigue damage variables. Int. J. Fatigue 100 (2017), pp. 187–194.
  • A. Wöhler, Über die Festigkeits-Versuche mit Eisen und Stahl (On strength tests of iron and steel). Zeitschrift für Bauwesen 20 (1870), pp. 73–106.
  • O.H. Basquin, The exponential law of endurance tests, Proc. ASTM, Vol.10, Part 11, ASTM, East Conshohocken, PA, 1910, pp. 625–630.
  • C. Stromeyer, The determination of fatigue limits under alternating stress conditions, Proc. Roy. Soc. Lond. 1914; 90(620):411–425.
  • A. Palmgren, Die Lebensdauer von Kugellagern (The life span of ball bearings). VDI-Zeitschrift 68 (1924), pp. 339–341.
  • L.F. Coffin, A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76(6) (1954), pp. 931–949.
  • S.S. Manson, Behavior of materials under conditions of thermal stress, National Advisory Committee for Aeronautics Technical Report (NACA-TR) 1170, 1954.
  • J. Kohout and S. Vechet, A new function for fatigue curves characterization and its multiple merits. Int. J. Fatigue 23(2) (2001), pp. 175–183.
  • K.N. Smith, P. Watson and T.H. Topper, A stress-strain function for the fatigue of metals. J. Mater 5(4) (1970), pp. 767–778.
  • Walker, K., The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. In: Effects of environment and complex load history on fatigue life, ASTM STP 462, Philadelphia , PA, 1970, pp. 1–14.
  • A. Fatemi and D.F. Socie, A critical plane approach to multiaxial fatigue damage including out of plane loading. Fatigue Fract. Eng. Mater. Struct 11 (1988), pp. 149–165.
  • K. Golos and F. Ellyin, A total strain energy density theory live damage. J. Pressure Vessel Technol. Trans. ASME 110 (1988), pp. 36–41.
  • W. Weibull, A statistical theory of the strength of materials. Ingeniorsvetenskapakademiens. Handlinger 151 (1939), pp. 1–45.
  • W.-S. Lei, Statistical size scaling of ceramic strength. J. Am. Ceram. Soc 102 (2019), pp. 90–97.
  • G. Qian, W.-S. Lei, Z. Yu, and F. Berto, Statistical size scaling of breakage strength of irregularly-shaped particles. Theor. Appl. Fract. Mech 102 (2019), pp. 51–58.
  • W.-S. Lei, Fracture probability of a randomly oriented microcrack under multi-axial loading for the normal tensile stress criterion. Theor. Appl. Fract. Mech 85 (2016), pp. 164–172.
  • H. Yaacoub Agha, A.-S. Beranger, R. Billardon, and F. Hild, High-cycle fatigue behavior of spheroidal graphite cast iron, Fatigue Fract. Eng. Mater. Struct. 21 (1998), pp. 287–296
  • B. Tomkins, Fatigue crack propagation-an analysis. Philos. Mag 155 (1968), pp. 1041–1066.
  • Y. Hong, X. Liu, Z. Lei and C. Sun, The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels. Int. J. Fatigue 89 (2016), pp. 108–118.
  • D.S. Palino, A. Tridello, G. Chiandussi and M. Rossetto, Effect of defect size on P-N curves in very-high-cycle fatigue. Procedia Structural Integrity 7 (2017), pp. 335–342.
  • J. Pellas, G. Baudin, and M. Robert, Mesure et calcul du seuil de fissuration après surcharge. Recherche aérospatiale 3 (1977), pp. 191–201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.