404
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Processing pathway effects in CoCrCuNi+X (Fe, Mn) high-entropy alloys

ORCID Icon, ORCID Icon, , &
Pages 1899-1913 | Received 26 Nov 2018, Accepted 14 Feb 2019, Published online: 15 May 2019

References

  • B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004), pp. 213–218. doi: 10.1016/j.msea.2003.10.257
  • J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau and S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6(5) (2004), pp. 299–303. doi: 10.1002/adem.200300567
  • J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau and S.-Y. Chou, Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A 35(8) (2004), pp. 2533–2536. doi: 10.1007/s11661-006-0234-4
  • C.-y. Hsu, J.-w. Yeh, S.-k. Chen and T.-t. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, Metall. Mater. Trans. A 35(5) (2004), pp. 1465–1469. doi: 10.1007/s11661-004-0254-x
  • P. Huang and J. Yeh, Multi-principal element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater. 6(1–2) (2004), pp. 74–78. doi: 10.1002/adem.200300507
  • T.K. Chen, M.S. Wong, T.T. Shun and J.W. Yeh, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coatings Technol. 200(188–189) (2004), pp. 193–200. doi: 10.1016/j.surfcoat.2004.08.023
  • D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017), pp. 448–511. doi: 10.1016/j.actamat.2016.08.081
  • P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep and R.S. Kottada, Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite, Mater. Des. 134 (2017), pp. 426–433. doi: 10.1016/j.matdes.2017.08.053
  • R.B. Mane and B.B. Panigrahi, Comparative study on sintering kinetics of as-milled and annealed CoCrFeNi high entropy alloy powders, Mater. Chem. 210 (2018), pp. 49-–56.
  • A. Zhang, J. Han, J. Meng, B. Su and P. Li, Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture, Mater. Lett. 181 (2016), pp. 82–85. doi: 10.1016/j.matlet.2016.06.014
  • S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick and K. Biswas, Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties, Mater. Sci. Eng. A 679(September 2016) (2017), pp. 299–313. doi: 10.1016/j.msea.2016.09.062
  • J. Cieslak, J. Tobola, K. Berent and M. Marciszko, Phase composition of AlxFeNiCrCo high entropy alloys prepared by sintering and arc-melting methods, J. Alloys Compd. 740 (2018), pp. 264–272. doi: 10.1016/j.jallcom.2017.12.333
  • X.F. Wang, Y. Zhang, Y. Qiao and G.L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics 15(3) (2007), pp. 357–362. doi: 10.1016/j.intermet.2006.08.005
  • N. Park, I. Watanabe, D. Terada, Y. Yokoyama, P.K. Liaw and N. Tsuji, Recrystallization behavior of CoCrCuFeNi high-entropy alloy, Metall. Mater. Trans. A 46(4) (2015), pp. 1481–1487. doi: 10.1007/s11661-014-2594-5
  • N. Liu, P. Wu, P. Zhou, Z. Peng, X. Wang and Y. Lu, Rapid solidification and liquid-phase separation of undercooled CoCrCuFexNi high-entropy alloys, Intermetallics 72 (2016), pp. 44–52. doi: 10.1016/j.intermet.2016.01.008
  • L.J. Zhang, J.T. Fan, D.J. Liu, M.D. Zhang, P.F. Yu, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li and R.P. Liu, The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state, J. Alloys Compd. 745 (2018), pp. 75–83. doi: 10.1016/j.jallcom.2018.02.170
  • B.R. Braeckman and D. Depla, Structure formation and properties of sputter deposited Nbx–CoCrCuFeNi high entropy alloy thin films, J. Alloys Compd. 646 (2015), pp. 810–815. doi: 10.1016/j.jallcom.2015.06.097
  • W. Wang, L. Hu, S. Luo, L. Meng, D. Geng and B. Wei, Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy, Intermetallics 77 (2016), pp. 41–45. doi: 10.1016/j.intermet.2016.07.003
  • P.H. Wu, N. Liu, P.J. Zhou, Z. Peng, W.D. Du, X.J. Wang and Y. Pan, Microstructures and liquid phase separation in multicomponent CoCrCuFeNi high entropy alloys, Mater. Sci. Technol. 0836(May) (2016), pp. 1–5. doi: 10.1179/1743284715Y.0000000127
  • A. Munitz, M. Kaufman and R. Abbaschian, Liquid phase separation in transition element high entropy alloys, Intermetallics 86 (2017), pp. 59–72. doi: 10.1016/j.intermet.2017.03.015
  • T. Guo, J. Li, J. Wang, Y. Wang, H. Kou and S. Niu, Liquid-phase separation in undercooled CoCrCuFeNi high entropy alloy, Intermetallics 86 (2017), pp. 110–115. doi: 10.1016/j.intermet.2017.03.021
  • A. Durga, K.C. Hari Kumar and B.S. Murty, Phase formation in equiatomic high entropy alloys: CALPHAD approach and experimental studies, Trans. Indian Inst. Met. 65(4) (2012), pp. 375–380. doi: 10.1007/s12666-012-0138-5
  • S. Praveen, B.S. Murty and R.S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys, Mater. Sci. Eng. A 534 (2012), pp. 83–89. doi: 10.1016/j.msea.2011.11.044
  • S. Praveen, B.S. Murty and R.S. Kottada, Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering, Jom 65(12) (2013), pp. 1797–1804. doi: 10.1007/s11837-013-0759-0
  • S. Praveen, A. Anupam, R. Tilak and R.S. Kottada, Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media, Mater. Chem. Phys. 210 (2018), pp. 57–61. doi: 10.1016/j.matchemphys.2017.10.040
  • N. Derimow and R. Abbaschian, Solidification microstructures and calculated mixing enthalpies in CoCrCu containing alloys, Mater. Today Commun. 15(February) (2018), pp. 1–10.
  • R. Dean, J. Long, T. Graham, E. Potter and E. Hayes, The Cu–Mn equilibrium system, Trans. Am. Soc. Met. 34 (1945), pp. 443–464.
  • J. Miettinen, Thermodynamic description of the Cu–Mn–Ni system at the Cu–Ni side, Calphad Comput. Coupling Phase Diagrams Thermochem. 27(2) (2003), pp. 147–152. doi: 10.1016/j.calphad.2003.08.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.