147
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Influence of static magnetic field intensity on the separation and migration of Fe-rich bulks in an immiscible (Fe–C)–Cu alloy

&
Pages 2221-2235 | Received 20 Feb 2019, Accepted 03 May 2019, Published online: 29 May 2019

References

  • Z.H.I. Sun, M. Guo, J. Vleugels, O. Van Biest, and B. Blanpain, Strong static magnetic field processing of metallic materials: A review. Curr. Opin. Solid State Mater. Sci 16 (2012), pp. 254–267. doi: 10.1016/j.cossms.2012.08.001
  • H. Kimura, M.F. Harvey, D.J. O’Connor, G.D. Robertson, and G.C. Valley, Magnetic field effects on float-zone Si crystal growth. J. Cryst. Growth 62 (1983), pp. 523–532. doi: 10.1016/0022-0248(83)90395-0
  • P. de Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi, and M. Pernet, Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature 349 (1991), pp. 770–772. doi: 10.1038/349770a0
  • H. Yasuda, I. Ohnaka, Y. Yamamoto, A.S. Wismogroho, N. Takezawa, and K. Kishio, Alignment of BiMn crystal orientation in Bi-20at%Mn alloys by laser melting under a magnetic field. Mater. Trans 44 (2003), pp. 2550–2554. doi: 10.2320/matertrans.44.2550
  • T. Kuribayashi, M.G. Sung, T. Itoh, K. Sassa, and S. Asai, Fabrication of the crystal-oriented thermoelectric materials Bi2Te3 by slip casting under a high magnetic field. Mater. Trans 47 (2006), pp. 2387–2392. doi: 10.2320/matertrans.47.2387
  • P. Deng, J. Li, and Z. Xu, Texture evolution of Terfenol-D by solidification in a magnetic field. J. Appl. Phys 100 (2006), p. 053905. doi: 10.1063/1.2335663
  • M. Li, T. Tamura, and K. Miwa, Microstructure and microtexture formation of AZ91D magnesium alloys solidified in a static magnetic field. Metall. Mater. Trans. A. 40A (2009), pp. 1422–1435. doi: 10.1007/s11661-009-9831-3
  • S. Asai, Application of high magnetic field in inorganic materials processing, Modelling Simul. Mater. Sci. Eng 12 (2004), pp. R1–R12.
  • X. Li, Y. Fautrelle, and Z. Ren, Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field. Acta Mater. 55 (2007), pp. 3803–3813. doi: 10.1016/j.actamat.2007.02.031
  • X. Li, Y. Fautrelle, and Z. Ren, Influence of a high magnetic field on columnar dendrite growth during directional solidification. Acta Mater. 55 (2007), pp. 5333–5347. doi: 10.1016/j.actamat.2007.05.036
  • W.L. Ren, Y.F. Fan, J.W. Feng, Y.B. Zhong, J.B. Yu, Z.M. Ren, and P.K. Liaw, Non-monotonic changes in critical solidification rates for stability of liquid-solid interfaces with static magnetic fields. Sci. Rep. 6 (2016), p. 20598. doi: 10.1038/srep20598
  • J. Gao, M. Han, A. Kao, K. Pericleous, D.V. Alexandrov, and P.K. Galenko, Dendritic growth velocities in an undercooled melt of pure nickel under static magnetic fields: A test of theory with convection. Acta Mater. 103 (2016), pp. 184–191. doi: 10.1016/j.actamat.2015.10.014
  • J. Wang, Y.B. Zhong, Y. Fautrelle, T.X. Zheng, F. Li, Z.M. Ren, and F. Debray, Influence of the static high magnetic field on the liquid-liquid phase separation during solidifying the hyper-monotectic alloys. Appl. Phys. A 112 (2013), pp. 1027–1031. doi: 10.1007/s00339-012-7470-9
  • E.-G. Wang, L. Zhang, X.-W. Zuo, and J.-C. He, Morphology of the Cu-rich phase in Cu-Pb hypermonotectic alloys under an intense magnetic field. Steel Res. Inter. 78 (2007), pp. 386–390. doi: 10.1002/srin.200705908
  • H. Yasuda, I. Ohnaka, B.K. Dhindaw, T. Nagira, A. Sugiyama, K. Umetani, K. Uesugi, A. Tsuchiyama, and T. Nakano, Control of monotectic solidification by a high static magnetic field. Trans. Indian Inst. Metals 60 (2007), pp. 75–78.
  • Y. Zhong, T. Zheng, L. Dong, B. Zhou, W. Ren, J. Wang, Z. Ren, F. Debray, E. Beaugnon, H. Wang, Q. Wang, and Y. Dai, Controlling droplet distribution using thermoelectric magnetic forces during bulk solidification processing of a Zn-6wt% Bi immiscible alloy. Mater. Des. 100 (2016), pp. 168–174. doi: 10.1016/j.matdes.2016.03.078
  • X. Zuo, E. Wang, H. Han, L. Zhang, and J. He, Magnetic properties of Fe-49%Sn monotectic alloys solidified under a high magnetic field. J. Alloys Compd. 492 (2010), pp. 621–624. doi: 10.1016/j.jallcom.2009.11.195
  • I. Egry, L. Ratke, M. Kolbe, D. Chatain, S. Curiotto, L. Battezzati, E. Johnson, and N. Pryds, Interfacial properties of immiscible Co–Cu alloys. J. Mater. Sci. 45 (2010), pp. 1979–1985. doi: 10.1007/s10853-009-3890-0
  • G. Wilde and J.H. Perepezko, Critical-point wetting at the metastable chemical binodal in undercooled Fe-Cu alloys. Acta Mater. 47 (1999), pp. 3009–3021. doi: 10.1016/S1359-6454(99)00165-2
  • T. Tamura, Effect of electromagnetic forces on separation of two immiscible liquids in the Fe-Cu-C system. Mater. Trans. 57 (2016), pp. 188–192. doi: 10.2320/matertrans.M2015364
  • Q. Chen and Z. Jin, The Fe-Cu system: A thermodynamic evaluation. Metall. Mater. Trans. A 26A (1995), pp. 417–426. doi: 10.1007/BF02664678
  • S. Curiotto, R. Greco, N.H. Pryds, E. Johnson, and L. Battezzati, The liquid metastable miscibility gap in Cu-based systems. Fluid Phase Equilib. 256 (2007), pp. 132–136. doi: 10.1016/j.fluid.2006.10.003
  • C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Formation of immiscible alloy powders with egg-type microstructure. Science 297 (2002), pp. 990–993. doi: 10.1126/science.1073050
  • C.P. Wang, X.J. Liu, Y. Takaku, I. Ohnuma, R. Kainuma, and K. Ishida, Formation of core-type macroscopic morphologies in Cu-Fe base alloys with liquid miscibility gap. Metall. Mater. Trans. A 35A (2004), pp. 1243–1253. doi: 10.1007/s11661-004-0298-y
  • C. Li, L. Chen, and Z. Ren, Application of ring method to measure surface tensions of liquids in high magnetic field. Rev. Sci. Instrum. 83 (2012), p. 043906. doi: 10.1063/1.4704081
  • Y. Fujimura and M. Iino, The surface tension of water under high magnetic fields. J. Appl. Phys. 103 (2008), p. 124903. doi: 10.1063/1.2940128
  • Y. Nakagawa, Magnetic susceptibility of liquid alloys of copper with cobalt, iron, manganese and chromium. J. Phys. Soc. Japan 14 (1959), pp. 1372–1379. doi: 10.1143/JPSJ.14.1372
  • F. Baltaretu, J. Wang, S. Letout, Z.M. Ren, X. Li, O. Budenkova, and Y. Fautrelle, Thermoelectric effects on electrically conducting particles in liquid metal. Magnetohydrodynamics 51 (2015), pp. 45–55. doi: 10.22364/mhd.51.1.5
  • J. Wang, Y. Fautrelle, Z.M. Ren, X. Li, H. Nguyen-Thi, N. Mangelinck-Noel, G.S. Abou Jaoude, Y.B. Zhong, I. Kaldre, A. Bojarevics, and L. Buligins, Thermoelectric magnetic force acting on the solid during directional solidification under a static magnetic field. Appl. Phys. Lett. 101 (2012), p. 251904. doi: 10.1063/1.4772510
  • J. Wang, Y. Fautrelle, H. N-Thi, G. Reinhart, H. Liao, X. Li, Y. Zhong, and Z. Ren, Thermoelectric magnetohydrodynamic flows and their induced change of solid-liquid interface shape in static magnetic field-assisted directional solidification. Metall. Mater. Trans. A 47A (2016), pp. 1169–1179. doi: 10.1007/s11661-015-3277-6
  • H. Liu, W. Xuan, X. Xie, C. Li, J. Wang, J. Yu, X. Li, Y. Zhong, and Z. Ren, Columnar-to-equiaxed transition and equiaxed grain alignment in directionally solidified Ni3Al alloy under an axial magnetic field. Metall. Mater. Trans. A 48A (2017), pp. 4193–4203. doi: 10.1007/s11661-017-4173-z
  • P. Lehmann, R. Moreau, D. Camel, and R. Bolcato, Modification of interdendritic convection in directional solidification by a uniform magnetic field. Acta Mater. 46 (1998), pp. 4067–4079. doi: 10.1016/S1359-6454(98)00064-0
  • J. Van Zytveld, Electrical resistivities of liquid transition metals. J. de Phys. Colloq. 41 (1980), pp. C8-503–C8-506. doi: 10.1051/jphyscol:19808126
  • A. Lange, A. Cramer, and E. Beyer, Thermoelectric currents in laser induced melts pools. J. Laser Appl. 21 (2009), pp. 82–87. doi: 10.2351/1.3120213
  • J.R. Davis, ASM Specialty Handbook Copper and Copper Alloys, The Materials International Society, Materials Park, OH, 1993.
  • C. Chaib, J.G. Gasser, J. Hugel, and L. Roubi, Electrical resistivity and absolute thermoelectric power of liquid copper-lead alloys. Phys. B 252 (1998), pp. 106–113. doi: 10.1016/S0921-4526(97)00675-3
  • L. Battezzati and A.L. Greer, The viscosity of liquid metals and alloys. Acta Metall. 37 (1989), pp. 1791–1802. doi: 10.1016/0001-6160(89)90064-3
  • A. Hellawell, S. Liu, and S.Z. Lu, Dendrite fragmentation and the effects of fluid flow in castings. JOM 49(3) (1997), pp. 18–20. doi: 10.1007/BF02914650

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.