675
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructure and mechanical properties of large-volume gradient-structure aluminium sheets fabricated by cyclic skin-pass rolling

ORCID Icon, , ORCID Icon, , , & show all
Pages 2265-2284 | Received 02 Jul 2018, Accepted 13 May 2019, Published online: 25 May 2019

References

  • R.Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nat. Mater. 3 (2004), pp. 511–516. doi: 10.1038/nmat1180
  • Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61 (2013), pp. 782–817. doi: 10.1016/j.actamat.2012.10.038
  • Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1999), pp. 579–583. doi: 10.1016/S1359-6454(98)00365-6
  • S.H. Lee, H. Inagaki, H. Utsunomiya, Y. Saito, and T. Sakai, Ultra grain refinement of commercial purity aluminum by a multi-stack ARB process. Mater. Trans. 44 (2003), pp. 1376–1381. doi: 10.2320/matertrans.44.1376
  • H.L. Yu, C. Lu, K. Tieu, and C. Kong, Fabrication of nanostructured aluminum sheets using four-layer accumulative roll bonding, Mater. Manuf. Process. 29 (2014), pp. 448–453. doi: 10.1080/10426914.2013.872259
  • A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008), pp. 893–979. doi: 10.1016/j.pmatsci.2008.03.002
  • S.H. Joo, D.H Pi, A.D.H. Setyawan, H. Kato, M. Janecek, Y.C. Kim, S. Lee, and H.S. Kim, Work-hardening induced tensile ductility of bulk metallic glasses via high-pressure torsion, Sci. Rep. 5 (2015), p. 9660. doi: 10.1038/srep09660
  • R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006), pp. 881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • D.M. Jafarlou, E. Zalnezhad, A.S. Hamouda, G. Faraji, N.A.B. Mardi, and M.A. Hassan Mohamed, Evaluation of the mechanical properties of AA6063 processed by severe plastic deformation, Metall. Mater. Trans. A 46 (2015), pp. 2172–2184. doi: 10.1007/s11661-015-2806-7
  • H.L. Yu, C. Lu, K. Tieu, X.H. Liu, Y. Sun, Q.B. Yu, and C. Kong, Asymmetric cryorolling for fabrication of nanostructured aluminum sheets, Sci. Rep. 2 (2012), p. 772. doi: 10.1038/srep00772
  • R.O. Ritchie, The conflicts between strength and toughness, Nat. Mater. 10 (2011), pp. 817–822. doi: 10.1038/nmat3115
  • H. Lyu, N. Taheri-Nassaj, and H. Zbib, A multiscale gradient-dependent plasticity model for size effects. Philos. Mag. 96 (2016), pp. 1883–1908. doi: 10.1080/14786435.2016.1180437
  • M. Hamid, H. Lyu, and H. Zbib, A dislocation-based stress-strain gradient plasticity model for strength and ductility in materials with gradient microstructures. Philos. Mag. 98 (2018), pp. 2896–2916. doi: 10.1080/14786435.2018.1511069
  • H.L. Yu, C. Lu, K. Tieu, H.J. Li, A. Godbole, and S.H. Zhang, Special rolling techniques for improvement of mechanical properties of ultrafine-grained metal sheets: A review, Adv. Eng. Mater. 18 (2016), pp. 754–769. doi: 10.1002/adem.201500369
  • K. Lu, Making strong nanomaterials ductile with gradients, Science 345 (2014), pp. 1455–1456. doi: 10.1126/science.1255940
  • J. Li, S. Chen, X. Wu, A.K. Soh and J. Lu, The main factor influencing the tensile properties of surface nano-crystallized graded materials. Mater. Sci. Eng. A. 527 (2010), pp. 7040–7044. doi: 10.1016/j.msea.2010.07.064
  • J. Villegas, L. Shaw, K. Dai, W. Yuan, J. Tian, P. Liaw, and D. Klarstrom, Enhanced fatigue resistance of a nickel-based Hastelloy induced by a surface nanocrystallization and hardening process. Philos. Mag. Lett. 85 (2005) 427–438. doi: 10.1080/09500830500311705
  • J.W. Tian, J. Villegas, W. Yuan, D. Fielden, L. Shaw, P.K. Liaw, and D.L. Klarstrom, A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 superalloy. Mater. Sci. Eng. A. 468–470 (2007), pp. 164–170. doi: 10.1016/j.msea.2006.10.150
  • K. Dai and L. Shaw, Analysis of fatigue resistance improvements via surface severe plastic deformation. Int. J. Fatigue 30 (2008), pp. 1398–1408. doi: 10.1016/j.ijfatigue.2007.10.010
  • J. Li, S. Chen, X. Wu, and A.K. Soh, A physical model revealing strong strain hardening in nano-grained metals induced by grain size gradient structure. Mater. Sci. Eng. A. 620 (2015), pp. 16–21. doi: 10.1016/j.msea.2014.09.117
  • H. Lyu, M. Hamid, A. Ruimi, and H. Zbib, Stress/strain gradient plasticity model for size effects in heterogeneous nano-microstructres. Int. J. Plasticity, 97 (2017) 46–63. doi: 10.1016/j.ijplas.2017.05.009
  • R. Thevamaran, O. Lawal, S. Yazdi, S.J. Jeon, J.H. Lee, and E.L. Thomas, Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes, Science 354 (2016), pp. 312–316. doi: 10.1126/science.aag1768
  • T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper, Science 331 (2011), pp. 1587–1590. doi: 10.1126/science.1200177
  • X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu, Extraordinary strain hardening by gradient structure, Proc. Natl. Acad. Sci. USA. 111 (2014), pp. 7197–7201. doi: 10.1073/pnas.1324069111
  • H. Yang, E. J. Lavernia, and J. M. Schoenung, Novel fabrication of bulk Al with gradient grain size distributions via powder metallurgy, Philos. Mag. Lett. 95 (2015), pp. 177–186. doi: 10.1080/09500839.2015.1028504
  • S. Kalpakjian, Manufacturing Processes for Engineering Materials, 2nd ed. Addison-Wesley, Reading, MA, 1991, p. 356.
  • H. Kijima, Influence of lubrication on roughness crushing in skin-pass rolling of steel strip, J. Mater. Process. Technol. 216 (2015), pp. 1–9. doi: 10.1016/j.jmatprotec.2014.08.010
  • A.M. Giarola, P.H.R. Pereira, P.A. Stemler, A.E.M. Pertence, H.B. Campos, M.T.P. Aguilar, and P.R. Cetlin, Strain heterogeneities in the rolling direction of steel sheets submitted to the skin pass: A finite element analysis, J. Mater. Process. Technol. 216 (2015), pp. 234–247. doi: 10.1016/j.jmatprotec.2014.09.015
  • M. Mehdi, Y. He, E.J. Hilinski, and A. Edrisy, Effect of skin pass rolling reduction rate on the texture evolution of a non-oriented electrical steel after inclined cold rolling, J. Magn. Magn. Mater. 429 (2017), pp. 148–160. doi: 10.1016/j.jmmm.2017.01.020
  • W.J. Sun, Research on surface roughness of cold-rolled plate and strip, Alum. Fabr. 3 (2008), pp. 42–44.
  • A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part i—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99 (1977), pp. 2–15. doi: 10.1115/1.3443401
  • A.A. Benzerga, J. Besson, and A. Pineau. Anisotropic ductile fracture part I: experiments. Acta Mater. 52 (2004) 4623–4638. doi: 10.1016/j.actamat.2004.06.020
  • X. Zhao, G. Xue, and Y. Liu, Gradient crystalline structure induced by ultrasonic impacting and rolling and its effect on fatigue behavior of TC11 titanium alloy, Res. Phys. 7 (2017), pp. 1845–1851.
  • T. Huang, Q. Zhao, Z. Liu, and S. Bai, Enhanced damage tolerance through reconstructing residual stress and CuMg co-clusters by pre-rolling in an Al-Cu-Mg alloy, Mater. Sci. Eng. A. 700 (2017), pp. 241–249. doi: 10.1016/j.msea.2017.06.013
  • Y. Wang, M. Chen, F. Zhou, and E. Ma, High tensile ductility in a nanostructured metal, Nature 419 (2002), pp. 912–915. doi: 10.1038/nature01133
  • D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavenia, Al–Mg alloy engineered with bimodal grain size for high strength and increased ductility, Scr. Mater. 49 (2003), pp. 297–302. doi: 10.1016/S1359-6462(03)00283-5
  • H.L. Yu, K. Tieu, S. Hadi, C. Lu, A. Godbole, and C. Kong, High strength and ductility of ultrathin laminate foils using accumulative roll bonding and asymmetric rolling, Metall. Mater. Trans. A. 46 (2015), pp. 869–879. doi: 10.1007/s11661-014-2640-3
  • L. Jiang, K. Ma, H. Yang, M. Li, E.J. Lavernia, and J.M. Schoenung, The microstructural design of trimodal aluminum composites, JOM 66 (2014), pp. 898–908. doi: 10.1007/s11837-014-0906-2
  • Y. Zhang, S. Sabbaghianrad, H. Yang, T.D. Topping, T.G. Langdon, E.J. Lavernia, J.M. Schoenung, and Nutt, S.R. Two-step spd processing of a trimodal al-based nano-composite, Metall. Mater. Trans. A. 46 (2015), pp. 5877–5886. doi: 10.1007/s11661-015-3151-6
  • X. Lu, X. Zhang, M. Shi, F. Roters, G. Kang, and D. Raabe. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper. Int. J. Plasticity, 113 (2019), pp. 52–73. doi: 10.1016/j.ijplas.2018.09.007
  • H.L. Yu, C. Lu, A.K. Tieu, H.J. Li, A. Godbole, C. Kong, and X. Zhao. Simultaneous grain growth and grain refinement in bulk ultrafine-grained copper under tensile deformation at room temperature. Metall. Mater. Trans. A. 47 (2016), pp. 3785–3789. doi: 10.1007/s11661-016-3573-9
  • F.P. Yuan, D.S. Yan, J.D. Sun, L.L. Zhou, Y.T. Zhu, and X.L. Wu. Ductility by shear band delocalization in the nano-layer of gradient structure. Mater. Res. Lett. 7 (2019), pp. 12–17. doi: 10.1080/21663831.2018.1546238
  • H.L. Yu, X.H. Liu, H.Y. Bi, and L.Q. Chen, Deformation behavior of inclusions in stainless steel strips during multi-pass cold rolling, J. Mater. Process. Technol. 209 (2009), pp. 455–461. doi: 10.1016/j.jmatprotec.2008.02.016
  • N. Hattori, R. Matsumoto, and H. Utsunomiya, Residual stress distribution through thickness in cold-rolled aluminum sheet, Key Eng. Mater. 622–623 (2014), pp. 1000–1007. doi: 10.4028/www.scientific.net/KEM.622-623.1000
  • M. Yang, Y. Pan, F. Yuan, Y. Zhu, and X. Wu. Back stress strengthening and strain hardening in gradient structure. Mater. Res. Lett. 4 (2016), pp. 145–151. doi: 10.1080/21663831.2016.1153004
  • M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, and X. Wu. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc. Natl. Acad. Sci. USA. 115 (2018) 7224–7229. doi: 10.1073/pnas.1807817115

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.