239
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Experimental and theoretical assessment of Fe-doped indium-oxide-based dilute magnetic semiconductors

, , &
Pages 2285-2302 | Received 18 Sep 2018, Accepted 20 May 2019, Published online: 01 Jun 2019

References

  • B. Santara, B. Pal, and P.K. Giri, Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J. Appl. Phys 110 (2011), pp. 114322. doi: 10.1063/1.3665883
  • J. Vecchietti, A. Bonivardi, W. Xu, D. Stacchiola, and J.J. Delgado, Understanding the role of oxygen vacancies in the water gas shift reaction on ceria-supported platinum catalysts. ACS Catal. 4 (2014), pp. 2088–2096. doi: 10.1021/cs500323u
  • Y. Fu, N. Sun, L. Feng, S. Wen, Y. An, and J. Liu, Local structure and magnetic properties of Fe-doped SnO2 films. J. Alloy Compd., 698(2017), pp. 863–867. doi: 10.1016/j.jallcom.2016.12.297
  • A.M.H.R. Hakimi, F. Schoofs, M.G. Blamire, S. Langridge, and S.S. Dhesi, Intrinsic and extrinsic ferromagnetism in Co-doped indium Tin oxide revealed using X-Ray magnetic Circular Dichroism. Adv. Cond. Matter. Phys Article ID 2836254 (2017), pp. 7 pages). doi:10.1155/2017/2836254.
  • G. Wei, L. Wei, Y. Chen, S. Yan, Y. Tian, L. Mei, and J. Jiao, Magnetic coupling and electric transport in Nb, Fe co-doped rutile TiO2 epitaxial films. J. Alloy Compd 695 (2017), pp. 2261–2265. doi: 10.1016/j.jallcom.2016.11.077
  • H. Zhang, X. Ouyang, B. Yang, R. Lutes, and Y. Ni, Synergistic effect of La and Co co-doping on room-temperature ferromagnetism enhancement of TiO2 nanoparticles. Ceram. Int 44 (2018), pp. 6362–6369. doi: 10.1016/j.ceramint.2018.01.027
  • L. Le, J. Xu, Z. Zhou, H. Wang, R. Xiong, and J. Shi, Effect of oxygen vacancies and Ag deposition on the magnetic properties of Ag/N co-doped TiO2 single-crystal films. Mater. Res. Bull 102 (2018), pp. 337–341. doi: 10.1016/j.materresbull.2018.01.045
  • W. Chen, X. Liu, S. Zhuo, J. Chai, and T. Xu, Hydrogen Annealing on the structural, optical and magnetic properties of Yb-doped ZnO Diluted magnetic Semiconductor Thin Films. Int. J. Magnetics Electromagnetism 4 (2018), pp. 013.
  • A. Samanta, M.N. Goswami, and P.K. Mahapatra, Magnetic and electric properties of Ni-doped ZnO nanoparticles exhibit diluted magnetic semiconductor in nature. J. Alloy Compd 730 (2018), pp. 399–407. doi: 10.1016/j.jallcom.2017.09.334
  • K.U.R.S. S, V. Bhat, and V. Kamble, On exceeding the solubility limit of Cr+3 dopants in SnO2 nanoparticles based dilute magnetic semiconductors. J. Appl. Phys 123 (2018), pp. 161518. doi: 10.1063/1.5007147
  • D.P. Rai, A. Laref, A. Shankar, A.P. Sakhya, R. Khenata, and R.K. Thapa, Spin-induced transition metal (TM) doped SnO2 a dilute magnetic semiconductor (DMS): A first principles study. J. Phys. Chem. Solids 120 (2018), pp. 104–108. doi: 10.1016/j.jpcs.2018.04.006
  • R. Mukherji, V. Mathur, and M. Mukherji, A Perspective on Zinc oxide based Diluted magnetic semiconductors. J. Nano-& Electronic Phys 10 (2018), pp. 05008. doi: 10.21272/jnep.10(5).05008
  • Y. Huang, Z. Chen, X. Zhang, X. Wang, Y. Zhi, Z. Wu, and W. Tang, The structure and magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film. J. Semicond 39 (2018), pp. 053002. doi: 10.1088/1674-4926/39/5/053002
  • D. Ozaslan, O.M. Ozkendir, M. Gunes, Y. Ufuktepe, and C. Gumus, Study of the electronic properties of Cu2O thin films by X-ray absorption spectroscopy. Optik. (Stuttg) 157 (2018), pp. 1325–1330. doi: 10.1016/j.ijleo.2017.12.119
  • I.S. Brandt, M.A. Tumelero, E. Lima Jr, D.L. da Silva, R.D. Zysler, R. Faccio, and A.A. Pasa, Enhanced defect-mediated ferromagnetism in Cu2O by Co doping. J. Magn. Magn. Mater 441 (2017), pp. 374–386. doi: 10.1016/j.jmmm.2017.05.057
  • N.S. Garnet, V. Ghodsi, L.N. Hutfluss, P. Yin, M. Hegde, and P.V. Radovanovic, Probing the role of dopant oxidation state in the magnetism of Diluted magnetic Oxides using Fe-doped In2O3 and SnO2Nanocrystals. J. Phys. Chem. C 121 (2017), pp. 1918–1927. doi: 10.1021/acs.jpcc.6b09480
  • A. Schleife, M.D. Neumann, N. Esser, Z. Galazka, A. Gottwald, J. Nixdorf, R. Goldhahn, and M. Feneberg, Optical properties of In2O3 from experiment and first-principles theory: influence of lattice screening. New J. Phys 20 (2018), pp. 053016. doi: 10.1088/1367-2630/aabeb0
  • R. Mukherji, V. Mathur, A. Samariya, and M. Mukherji, Study of the hydrogenation and re-heating of Co-doped ZnO and In2O3 Nano composites. Adv. Compos. Hybrid Mater 1 (2018), pp. 809–818. doi: 10.1007/s42114-018-0052-3
  • H. Baqiah, N.B. Ibrahim, and M.H. Abdi, Effect of Cr doping in the microstructure, electrical and magnetic properties of In2− xCrxO3 system (x = 0.1 and x = 0.2). AIP Conf. Proc. 1571 (2013), pp. 3–9. doi: 10.1063/1.4858621
  • A.T. Apostolov, I.N. Apostolova, and J.M. Wesselinowa, Theoretical study of room temperature ferromagnetism and band gap energy of pure and ion doped In2O3 nanoparticles. J. Magn. Magn. Mater 456 (2018), pp. 263–268. doi: 10.1016/j.jmmm.2018.02.045
  • P.F. Xing, Y.X. Chen, S.S. Yan, G.L. Liu, L.M. Mei, and Z. Zhang, Tunable ferromagnetism by oxygen vacancies in Fe-doped In2O3 magnetic semiconductor. J. Appl. Phys 106 (2009), pp. 043909. doi: 10.1063/1.3202287
  • K. Wongsaprom, R. Jareanboon, S. Kingcha, S. Pinitsoontorn, and W. Ponhan, Mn-Doped In2O3 nanoparticles: a Simple Synthesis and room-temperature ferromagnetism. J. Supercond. Nov. Magn 30 (2017), pp. 1053–1060. doi: 10.1007/s10948-016-3903-6
  • A.R. Vazquez-Olmos, J.I. Gomez-Peralta, R.Y. Sato-Berru, and A.L. Fernandez-Osorio, Diluted magnetic semiconductors based on Mn-doped In2O3 nanoparticles. J. Alloy Compd 615 (2014), pp. S522–S525. doi: 10.1016/j.jallcom.2014.01.085
  • M.Z. Naik and A.V. Salker, A systematic study of cobalt doped In2O3 nanoparticles and their applications. Mater. Res. Innov 21 (2017), pp. 237–243. doi: 10.1080/14328917.2016.1207044
  • R. Mukherji, V. Mathur, A. Samariya, and M. Mukherji, Assessment of post Annealing on magnetic properties of Co doped In2O3 in hydrogen atmosphere using cluster analysis. Indian J. Sci. Technol 10 (2017), pp. 104954. doi: 10.17485/ijst/2017/v10i17/104954
  • X. Sun, K. Ma, C.E. Li, and W. Li, Formation of Fe-doped In2O3 nanowires and influence evolution of Fe ions on its photoluminescence property. J. Alloy Compd 764 (2018), pp. 861–868. doi: 10.1016/j.jallcom.2018.06.137
  • R. Mukherji, V. Mathur, A. Samariya, and M. Mukherji, A Review of transition metal-doped In2O3-based Diluted magnetic semiconductors. The IUP J. Electrical Electron. Eng 9 (2016), pp. 16–31.
  • H. Cao, P. Xing, W. Zhou, D. Yao, and P. Wu, Indium vacancy induced d0 ferromagnetism in Li-doped In2O3 nanoparticles. J. Magn. Magn. Mater 451 (2018), pp. 609–613. doi: 10.1016/j.jmmm.2017.11.077
  • D. Chu, Y.P. Zeng, D. Jiang, Z. Ren, W. Ren, J. Wang, and T. Zhang, Structural, optical, and magnetic properties of Fe-doped In2O3nanocubes. J. Mater. Res 23 (2008), pp. 2597–2601. doi: 10.1557/JMR.2008.0332
  • A. Singhal, S.N. Achary, J. Manjanna, O.D. Jayakumar, R.M. Kadam, and A.K. Tyagi, Colloidal Fe-doped indium oxide nanoparticles: facile synthesis, structural, and magnetic properties. J. Phys. Chem. C 113 (2009), pp. 3600–3606. doi: 10.1021/jp8097846
  • H. Gao, Z. Sun, W. Duan, Y. Chen, and M. Li, Magnetism regulation of (In1−xFex)2O3 semiconductors prepared by sol-gel method. J. WUHAN UNIV. TECHNOL. – Mater. Sci. Ed 25 (2010), pp. 20–23. doi: 10.1007/s11595-010-1020-0
  • N.S. Krishna, S. Kaleemulla, G. Amarendra, N.M. Rao, C. Krishnamoorthi, M.R. Begam, I. Omkaram, and D.S. Reddy, Room temperature ferromagnetism in (In1-x Nix)2O3 thin films. Physica B Condens. Matter 466 (2015), pp. 6–10. doi: 10.1016/j.physb.2015.03.014
  • R.K. Singhal, A. Samariya, S. Kumar, S.C. Sharma, Y.T. Xing, U.P. Deshpande, T. Shripathi, and E. Saitovitch, A close correlation between induced ferromagnetism and oxygen deficiency in Fe dopedIn2O3. Appl. Surf. Sci 257 (2010), pp. 1053–1057. doi: 10.1016/j.apsusc.2010.07.106
  • S.H. Babu, S. Kaleemulla, N.M. Rao, and C. Krishnamoorthi, Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications. J. Magn. Magn. Mater 416 (2016), pp. 66–74. doi: 10.1016/j.jmmm.2016.05.007
  • R.R. Ma, F.X. Jiang, X.F. Qin, and X.H. Xu, Effects of oxygen vacancy and local spin on the ferromagnetic properties of Ni-doped In2O3 powders. Mater. Chem. Phys 132 (2012), pp. 796–799. doi: 10.1016/j.matchemphys.2011.12.014
  • N.K. JI, M. Das, R. Mukherji, and R.N. Kumar, Assessment of heavy metal pollution in macrophytes, water and sediment of a tropical wetland system using hierarchical cluster analysis technique. J. Int. Environ. Appl. Sci 11 (2016), pp. 149–156.
  • K. Wongsaprom, S. Sonsupap, S. Maensiri, and P. Kidkhunthod, Room-temperature ferromagnetism in Fe-doped In2O3 nanoparticles. Appl. Phys. A-Mater 121 (2015), pp. 239–244. doi: 10.1007/s00339-015-9416-5
  • N.S. Krishna, S. Kaleemulla, G. Amarendra, N.M. Rao, C. Krishnamoorthi, M.R. Begam, D.S. Reddy, and I. Omkaram, Structural, optical, and magnetic properties of Fe doped In2O3 powders. Mater. Res. Bull 61 (2015), pp. 486–491. doi: 10.1016/j.materresbull.2014.10.065
  • R. Dong, L. Zhang, Z. Zhu, J. Yang, X. Gao, and S. Wang, Fabrication and formaldehyde sensing performance of Fe doped In2O3 hollow microspheres via a one-pot method. CrystEngComm 19 (2017), pp. 562–569. doi: 10.1039/C6CE02061E
  • M.S. Alshammari, R. Alhathlool, A.Z. Al-Anzi, K.Y. Museery, M.A. Alkhunayfir, O.M. Lemine, and M. Bououdina, Ferromagnetic Order in Substitutional Fe-doped In2O3 Powder. Physica E Low Dimens. Syst. Nanostruct 108 (2019), pp. 253–256. doi: 10.1016/j.physe.2018.11.030
  • D. Chakraborty, K. Munuswamy, K. Shaik, M.R. Nasina, S.R. Dugasani, and O. Inturu, Evidence of room temperature Ferromagnetism Due to oxygen vacancies in (In 1− x Fe x)2O3 Thin Films. J. Electron. Mater 47 (2018), pp. 2155–2164. doi: 10.1007/s11664-017-6026-3
  • D. Chakraborty, S. Kaleemulla, M. Kuppan, N.M. Rao, C. Krishnamoorthi, I. Omkaram, D.S. Reddy, and G.V. Rao, Oxygen vacancy induced room temperature ferromagnetism in (In1− x Nix)2O3 thin films. Indian J. Phys 92(5) (2018), pp. 1–10. doi: 10.1007/s12648-017-1145-5
  • C. Zener, Interaction between the d-shells in the transition metals. II. ferromagnetic compounds of manganese with perovskite structure. Phys. Rev 82 (1951), pp. 403. doi: 10.1103/PhysRev.82.403
  • T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and E.D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287 (2000), pp. 1019–1022. doi: 10.1126/science.287.5455.1019
  • T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater 9 (2010), pp. 965–974. doi: 10.1038/nmat2898
  • A.C. Durst, R.N. Bhatt, and P.A. Wolff, Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors. Phys Rev B 65 (2002), pp. 235205. doi: 10.1103/PhysRevB.65.235205
  • G. Rimal and J. Tang, Magnetic hard gap due to bound magnetic polarons in the localized regime. Sci. Rep 7 (2017), pp. 42224. doi: 10.1038/srep42224
  • K.C. Verma and R.K. Kotnala, Defects-assisted ferromagnetism due to bound magnetic polarons in Ce into Fe, Co: ZnO nanoparticles and first-principle calculations. Phys. Chem. Chem. Phys 18 (2016), pp. 5647–5657. doi: 10.1039/C5CP06930K
  • N. Bhakta, T. Inamori, R. Shirakami, Y. Tanioku, K. Yoshimura, and P.K. Chakrabarti, Room temperature magnetic ordering and analysis by bound magnetic polaron model of Yb3+ doped nanocrystalline zinc oxide (Zn0. 98Yb0. 02O). Mater. Res. Bull 104 (2018), pp. 6–14. doi: 10.1016/j.materresbull.2018.03.020
  • C. Chiorescu, J.L. Cohn, and J.J. Neumeier, Impurity conduction and magnetic polarons in antiferromagnetic oxides. Phys. Rev. B 76(2) (2007), pp. 020404. doi: 10.1103/PhysRevB.76.020404
  • B. Pal and P.K. Giri, High temperature ferromagnetism and optical properties of Co doped ZnO nanoparticles J. Appl. Phys 108 (2010), pp. 084322. doi: 10.1063/1.3500380
  • V.K. Sharma and G.D. Varma, Oxygen vacancies induced room temperature ferromagnetism in hydrogenated Mn-doped ZnO. J. Appl. Phys 102 (2007), pp. 056105. doi: 10.1063/1.2778283
  • B. Pal, D. Sarkar, and P.K. Giri, Structural, optical, and magnetic properties of Ni doped ZnO nanoparticles: Correlation of magnetic moment with defect density. Appl. Surf. Sci 356 (2015), pp. 804–811. doi: 10.1016/j.apsusc.2015.08.163
  • M. Amgad, A. Itoh, and M.M.K. Tsui, Extending Ripley’s K-function to Quantify Aggregation in 2-D Grayscale images. PloS One 10 (2015), pp. e0144404. doi: 10.1371/journal.pone.0144404
  • G. Srinet, R. Kumar, and V. Sajal, Structural, optical, vibrational, and magnetic properties of sol-gel derived Ni doped ZnO nanoparticles. J. Appl. Phys 114 (2013), pp. 033912. doi: 10.1063/1.4813868
  • S. Das, S. Banerjee, S. Bandyopadhyay, and T.P. Sinha, Magnetic and dielectric study of Fe-doped CdSe nanoparticles. Electron. Mater. Lett 14 (2018), pp. 52–58. doi: 10.1007/s13391-017-6265-8
  • A.K. Bhattacharjee, Bound magnetic polaron in semimagnetic semiconductors: Effects of Mn-Mn exchange interaction. Solid State Commun. 57 (1986), pp. 31–35. doi: 10.1016/0038-1098(86)90665-4
  • E.A. Salah, A.M. Turki, and E.M. Al-Othman, Assessment of water quality of Euphrates River using cluster analysis. J. Environ. Prot 3 (2012), pp. 1629. doi: 10.4236/jep.2012.312180
  • A. Vörösand and T.A. Snijders, Cluster analysis of multiplex networks: Defining composite network measures. Soc. Networks. 49 (2017), pp. 93–112. doi: 10.1016/j.socnet.2017.01.002
  • M. Boudreault, L.P. Caron, and S.J. Camargo, Reanalysis of climate influences on Atlantic tropical cyclone activity using cluster analysis. J. Geophys. Res. Atmos 122 (2017), pp. 4258–4280. doi: 10.1002/2016JD026103
  • A. Rabbani and S. Ayatollahi, Comparing three image processing algorithms to estimate the grain-size distribution of porous rocks from binary 2D images and sensitivity analysis of the grain overlapping degree. Special Topics & Reviews in Porous Media: An Int. J 6 (2015), pp. 71–89. doi: 10.1615/SpecialTopicsRevPorousMedia.v6.i1.60

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.