86
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First-principles study of elastic and electronic properties of layered ternary nitride SrZrN2 under pressure

, , , &
Pages 2321-2339 | Received 22 Nov 2018, Accepted 18 May 2019, Published online: 13 Jun 2019

References

  • F.J. DiSalvo, Solid-state chemistry: A rediscovered chemical frontier. Science 247 (1990), pp. 649–655. doi: 10.1126/science.247.4943.649
  • M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23 (2013), pp. 2185–2192. doi: 10.1002/adfm.201202502
  • J.J. He, N. Jiao, C.X. Zhang, H.P. Xiao, X.S. Chen, and L.Z. Sun, Spin switch of the transition-metal-doped boron nitride sheet through H/F chemical decoration. J. Phys. Chem. C 118 (2014), pp. 8899–8906. doi: 10.1021/jp410716q
  • N. E. Brese and M. O’Keeffe, “Crystal chemistry of inorganic nitrides.” Complexes, clusters and crystal chemistry. Springer, Berlin, Heidelberg, 1992.
  • R. Niewa and H. Jacobs, Group V and VI alkali nitridometalates: A growing class of compounds with structures related to silicate chemistry. Chem. Rev. 96 (1996), pp. 2053–2062. doi: 10.1021/cr9405157
  • M.A. Sriram, K.S. Weil, and P.N. Kumta, Low-temperature chemical approaches for synthesizing sulfides and nitrides of reactive transition metals. Appl. Organometall. Chem. 11 (1997), pp. 163–179. doi: 10.1002/(SICI)1099-0739(199702)11:2<163::AID-AOC564>3.0.CO;2-S
  • X.F. Li and Z.L. Liu, First-principles investigations of structural and electronic properties of niobium nitrides under pressures. J. At. Mol. Sci. 3 (2012), pp. 78–88.
  • A. Rabenau and H. Schultz, Re-evaluation of the lithium nitride structure. J. Less-Common Met. 50 (1976), pp. 155–159. doi: 10.1016/0022-5088(76)90263-0
  • H. Schultz and K.H. Thiemann, Defect structure of the ionic conductor lithium nitride (Li3N). Acta Crystallogr. A 35 (1979), pp. 309–314. doi: 10.1107/S0567739479000632
  • B.O. Johansson, J.E. Sundgren, U. Helmersson, and M.K. Hibbs, Structure of reactively magnetron sputtered Hf-N films. Appl. Phys. Lett. 44 (1984), pp. 670–672. doi: 10.1063/1.94871
  • J.Y. Shi, L.P. Yu, Y.Z. Wang, G.Y. Zhang, and H. Zhang, Influence of different types of threading dislocations on the carrier mobility and photoluminescence in epitaxial GaN. Appl. Phys. Lett. 80 (2002), pp. 2293–2295. doi: 10.1063/1.1465531
  • X.D. Ma, D.I. Bazhanov, O. Fruchart, F. Yildiz, T. Yokoyama, M. Przybylski, V.S. Stepanyuk, W. Hergert, and J. Kirschner, Strain relief guided growth of atomic nanowires in a Cu3N-Cu (110) molecular network. Phys. Rev. Lett. 102 (2009), pp. 205503. doi: 10.1103/PhysRevLett.102.205503
  • X.Z. Chen, H.A. Eick, and W. Lasocha, Synthesis and structural characterization of Sr2NbN3 and BaThN2. J. Solid State Chem. 138 (1998), pp. 297–301. doi: 10.1006/jssc.1998.7786
  • P.S. Herle, N.Y. Vasanthacharya, M.S. Hegde, and J. Gopalakrishnan, Synthesis of new transition metal nitrides, MWN2 (M = Mn, Co, Ni). J. Alloys Comput. 217 (1995), pp. 22–24. doi: 10.1016/0925-8388(94)01286-Q
  • D.S. Bem and H.C. zur Loye, Synthesis of the new ternary transition metal nitride FeWN2 via ammonolysis of a solid state oxide precursor. J. Solid State Chem. 104 (1993), pp. 467–469. doi: 10.1006/jssc.1993.1183
  • J. Grins, P.O. Käll, and G. Svensson, Synthesis and structural characterisation of MnWN2 prepared by ammonolysis of MnWO4. J. Mater. Chem. 5 (1995), pp. 571–575. doi: 10.1039/JM9950500571
  • K.S. Weil and P.N. Kumta, Chemical synthesis and structural investigation of a new ternary nitride, CrWN2. J. Solid State Chem. 128 (1997), pp. 185–190. doi: 10.1006/jssc.1996.7180
  • H. Luo, H. Wang, G. Zou, E. Bauer, T.M. McCleskey, A.K. Burrell, and Q. Jia, A review of epitaxial metal-nitride films by polymer-assisted deposition. Trans. Electr. Electron. Mater. 11 (2010), pp. 54–60. doi: 10.4313/TEEM.2010.11.2.054
  • G. Farault, R. Gautier, C.F. Baker, A. Bowman, and D.H. Gregory, Crystal chemistry and electronic structure of the metallic ternary nitride, SrTiN2. Chem. Mater. 15 (2003), pp. 3922–3929. doi: 10.1021/cm034502y
  • A. Kaur, E.R. Ylvisaker, Y. Li, G. Galli, and W.E. Pickett, First-principles study of electronic and vibrational properties of BaHfN2. Phys. Rev. B 82 (2010), pp. 155125. doi: 10.1103/PhysRevB.82.155125
  • D.H. Gregory, M.G. Barker, P.P. Edwards, and D.J. Siddons, Synthesis and structure of two new layered ternary nitrides, SrZrN2 and SrHfN2. Inorg. Chem. 35 (1996), pp. 7608–7613. doi: 10.1021/ic9607649
  • I. Ohkubo and T. Mori, Three-dimensionality of electronic structures and thermoelectric transport in SrZrN2 and SrHfN2 layered complex metal nitrides. Inorg. Chem. 53 (2014), pp. 8979–8984. doi: 10.1021/ic500902q
  • H. Tian, Z.T. Liu, Q.J. Liu, N.C. Zhang, and F.S. Liu, Structural, mechanical, electronic and optical properties of layered ternary nitrides SrZrN2 and SrHfN2: First-principles calculations. Comput. Mater. Sci. 93 (2014), pp. 249–254. doi: 10.1016/j.commatsci.2014.06.045
  • I. Ohkubo and T. Mori, Two-dimensional layered complex nitrides as a new class of thermoelectric materials. Chem. Mater. 26 (2014), pp. 2532–2536. doi: 10.1021/cm403840e
  • R.A.R. Al Orabi, E. Orisakwe, D. Wee, B. Fontaine, R. Gautier, J.F. Halet, and M. Fornari, Prediction of high thermoelectric potential in AMN2 layered nitrides: Electronic structure, phonons, and an harmonic effects. J. Mater. Chem. A 3 (2015), pp. 9945–9954. doi: 10.1039/C5TA00546A
  • I. Ohkubo and T. Mori, Anisotropic thermoelectric properties in layered complex nitrides with α-NaFeO2-type structure. APL Mater. 4 (2016), pp. 104808. doi: 10.1063/1.4955399
  • D.H. Gregory, M.G. Barker, P.P. Edwards, and D.J. Siddons, Synthesis and structure of the new ternary nitride SrTiN2. Inorg. Chem. 37 (1998), pp. 3775–3778. doi: 10.1021/ic971556z
  • M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias, and J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64 (1992), pp. 1045. doi: 10.1103/RevModPhys.64.1045
  • V. Milman, B. Winkler, J.A. White, C.J. Packard, M.C. Payne, E.V. Akhmatskaya, and R.H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quant. Chem. 77 (2000), pp. 895–910. doi: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
  • J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45 (1992), pp. 13244. doi: 10.1103/PhysRevB.45.13244
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865. doi: 10.1103/PhysRevLett.77.3865
  • D.M. Ceperley and B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45 (1980), pp. 566. doi: 10.1103/PhysRevLett.45.566
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976), pp. 5188. doi: 10.1103/PhysRevB.13.5188
  • R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65 (1952), pp. 349. doi: 10.1088/0370-1298/65/5/307
  • Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76 (2007), pp. 054115. doi: 10.1103/PhysRevB.76.054115
  • O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24 (1963), pp. 909–917. doi: 10.1016/0022-3697(63)90067-2
  • K.B. Panda and K.S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory. Comput. Mater. Sci. 35 (2006), pp. 134–150. doi: 10.1016/j.commatsci.2005.03.012
  • Y.X. Wang, Y. Cheng, X. He, G.F. Ji, and X.R. Chen, Pressure effects on structural, elastic and electronic properties of BaZnO2: First-principles study. Philos. Mag. 95 (2015), pp. 64–78. doi: 10.1080/14786435.2014.992491
  • Z.L. Lv, Y. Cheng, X.R. Chen, and G.F. Ji, Electronic, elastic and thermal properties of SrCu2As2 via first principles calculation. J. Alloys Compd. 570 (2013), pp. 156–161. doi: 10.1016/j.jallcom.2013.03.132
  • P. Wang, Y. Cheng, X.H. Zhu, X.R. Chen, and G.F. Ji, First principles investigations on elastic and electronic properties of BaHfN2 under pressure. J. Alloys Compd. 526 (2012), pp. 74–78. doi: 10.1016/j.jallcom.2012.02.118
  • H.Y. Zhang, Y. Cheng, M. Tang, X.R. Chen, and G.F. Ji, First-principles study of structural, elastic, electronic and thermodynamic properties of topological insulator Sb2Te3 under pressure. Comput. Mater. Sci. 96 (2015), pp. 342–347. doi: 10.1016/j.commatsci.2014.09.045
  • X.Q. Zhang, G.J. Li, Y. Cheng, and G.F. Ji, Structural, elastic, electronic and optical properties of platinum-based superconductor SrPt3P under pressure: A first-principles study. Philos. Mag. 96 (2016), pp. 399–412. doi: 10.1080/14786435.2015.1132855
  • P. Vinet, J.H. Rose, J. Ferrante, and J.R. Smith, Universal features of the equation of state of solids. J. Phys.: Condens. Matter. 1 (1989), p. 1941.
  • E. Orisakwe, B. Fontaine, D.H. Gregory, R. Gautier, and J.F. Halet, Theoretical study on the structural, electronic and physical properties of layered alkaline-earth-group-4 transition-metal nitrides AEMN2. RSC Adv. 4 (2014), pp. 31981–31987. doi: 10.1039/C4RA05395H
  • G.V. Sin’ko and N.A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. J. Phys.: Condens. Matter. 14 (2002), pp. 6989.
  • G.V. Sin’ko and N.A. Smirnov, Relative stability and elastic properties of hcp, bcc, and fcc beryllium under pressure. Phys. Rev. B 71 (2005), pp. 214108. doi: 10.1103/PhysRevB.71.214108
  • D.M. Teter, Computational alchemy: The search for new superhard materials. MRS Bull. 23 (1998), pp. 22–27. doi: 10.1557/S0883769400031420
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London, Edinburgh, and Dublin Philos. Mag. J. Sci. 45 (1954), pp. 823–843. doi: 10.1080/14786440808520496
  • H. Ledbetter and A. Migliori, A general elastic-anisotropy measure. J. Appl. Phys. 100 (2006), p. 063516. doi: 10.1063/1.2338835
  • P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84 (1998), pp. 4891–4904. doi: 10.1063/1.368733
  • D.H. Chung and W.R. Buessem, The elastic anisotropy of crystals. J. Appl. Phys. 38 (1967), pp. 2010–2012. doi: 10.1063/1.1709819
  • J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford, 1985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.