221
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Correlation among grain boundary character, carbide precipitation and deformation in Alloy 690

, , &
Pages 2393-2407 | Received 26 Dec 2018, Accepted 29 May 2019, Published online: 13 Jun 2019

Reference

  • B.A. Young, X.S. Gao, T.S. Srivatsan and P.J. King, The response of alloy 690 tubing in a pressurized water reactor environment. Mater. Des 28 (2007), pp. 373–379. doi: 10.1016/j.matdes.2005.10.001
  • J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu and S.C. Yao, The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL Alloy 690. Metall. Trans 20A (1989), pp. 2057–2067. doi: 10.1007/BF02650292
  • K. Stiller, J.O. Nilsson and K. Norring, Structure, chemistry, and stress corrosion cracking of grain boundaries in Alloy 600 and 690, Metall. Mater. Trans 27A (1996), pp. 327–341. doi: 10.1007/BF02648410
  • T.H. Lee, H.Y. Suh, S.K. Han, J.S. Noh and J.H. Lee, Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes. J. Nucl. Mater 479 (2016), pp. 85–92. doi: 10.1016/j.jnucmat.2016.06.038
  • E.L. Hall and C.L. Briant, The microstructure response of mill-annealed and solution-annealed Inconel 600 to heat treatment. Metall. Trans 16A (1985), pp. 1225–1236. doi: 10.1007/BF02670327
  • K.S. Min and S.M. Nam, Correlation between characteristics of grain boundary carbides and creep–fatigue properties in AISI 321 stainless steel. J. Nucl. Mater 322 (2003), pp. 91–97. doi: 10.1016/S0022-3115(03)00274-5
  • S. Spigarelli, M. Cabibbo, E. Evangelista and G. Palumbo, Analysis of the creep strength of a low-carbon AISI 304 steel with low-Σ grain boundaries. Mater. Sci. Eng 352A (2003), pp. 93–99. doi: 10.1016/S0921-5093(02)00903-6
  • M.H. Lewis and B. Hattersley, Precipitation of M23C6 in austenitic steels. Acta Metall. 13 (1965), pp. 1159–1168. doi: 10.1016/0001-6160(65)90053-2
  • E.A. Trillo and L.E. Murr, A TEM investigation of M23C6 carbide precipitation behaviour on varying grain boundary misorientions in 304 stainless steels. J. Mater. Sci 33 (1998), pp. 1263–1271. doi: 10.1023/A:1004390029071
  • B. Sasmal, Mechanism of formation of lamellar M23C6 at and near twin boundaries in austenitic stainless steels. Metall. Trans 30A (1999), pp. 2791–2801. doi: 10.1007/s11661-999-0116-7
  • H.U. Hong, B.S. Rho and S.W. Nam, Correlation of the M23C6 precipitation morphology with grain boundary characteristics in austenitic stainless steel. Mater. Sci. Eng 318A (2001), pp. 285–292. doi: 10.1016/S0921-5093(01)01254-0
  • T.M. Angeliu and G.S. Was, Behavior of grain boundary chemistry and precipitates upon thermal treatment of controlled purity Alloy 690. Metall Trans 21A (1990), pp. 2097–2107. doi: 10.1007/BF02647868
  • Y.S. Lim, J.S. Kim, H.P. Kim and H.D. Cho, The effect of grain boundary misorientation on the intergranular M23C6 carbide precipitation in thermally treated Alloy 690. J. Nucl. Mater 335 (2004), pp. 108–114. doi: 10.1016/j.jnucmat.2004.07.038
  • B. Chen, P.E.J. Flewitt and D.J. Smith, Microstructure sensitivity of 316H austenitic stainless steel: residual stress relaxation and grain boundary fracture. Mater. Sci. Eng 527A (2010), pp. 7387–7399. doi: 10.1016/j.msea.2010.08.010
  • Y.B. Han, X.Y. Xue, T.B. Zhang, R. Hu and J.S. Li, Grain boundary character correlated carbide precipitation and mechanical properties of Ni–20Cr–18W–1Mo superalloy. Mater. Sci. Eng 667A (2016), pp. 391–401. doi: 10.1016/j.msea.2016.05.028
  • Y.S. Lim, D.J. Kim, S.S. Hwang, H.P. Kim and S.W. Kim, M23c6 precipitation behavior and grain boundary serration in Ni-based Alloy 690. Mater. Charact 96 (2014), pp. 28–39. doi: 10.1016/j.matchar.2014.07.008
  • Y. Zhou, K.T. Aust, U. Erb and G. Palumbo, Effects of grain boundary structure on carbide precipitation in 304L stainless steel. Scr. Mater 45 (2001), pp. 49–54. doi: 10.1016/S1359-6462(01)00990-3
  • B. Alexandreanu, B. Capell and G.S. Was, Combined effect of special grain boundaries and grain boundary carbide on IGSCC of Ni–16Cr–9Fe–xC alloy. Mater. Sci. Eng A300 (2001), pp. 94–104. doi: 10.1016/S0921-5093(00)01705-6
  • S. Xia, B.X. Zhou, W.J. Chen and W.G. Wang, Effects of strain and annealing processes on the distribution of Σ3 boundaries in a Ni-based superalloy. Scr. Mater 54 (2006), pp. 2019–2022. doi: 10.1016/j.scriptamat.2006.03.014
  • H. Li, S. Xia, B.X. Zhou, W.J. Chen and C.L. Hu, The dependence of carbide morphology on grain boundary character in the highly twinned Alloy 690. J. Nucl. Mater 399 (2010), pp. 108–113. doi: 10.1016/j.jnucmat.2010.01.008
  • G. Palumbo, K.T. Aust and E.M. Lehockey, On a more restrictive geometric criterion for “special” CSL grain boundaries. Scr. Mater 38 (1998), pp. 1685–1690. doi: 10.1016/S1359-6462(98)00077-3
  • S. Xia, B.X. Zhou and W.J. Chen, Effect of single-step strain and annealing on grain boundary character distribution and intergranular corrosion in Alloy 690. J. Mater. Sci 43 (2008), pp. 2990–3000. doi: 10.1007/s10853-007-2164-y
  • H. Li, X.R. Liu, K. Zhang, W.Q. Liu, S. Xia and B.X. Zhou, Effect of nearby grain boundary on the carbide precipitation behavior in a nickel based superalloy. Phil. Mag 99 (2019), pp. 318–327. doi: 10.1080/14786435.2018.1539263
  • S. Sinha, D. Kim, E. Fleury and S. Suwas, Effect of grain boundary engineering on the microstructure and mechanical properties of copper containing austenitic stainless steel. Mater. Sci. Eng A626 (2015), pp. 175–185. doi: 10.1016/j.msea.2014.11.053
  • T. Watanabe and S. Tsurekawa, Toughening of brittle materials by grain boundary engineering. Mater. Sci. Eng A387-389 (2004), pp. 447–455. doi: 10.1016/j.msea.2004.01.140
  • Y.J. Kwon, H.J. Seo, J.N. Kim and C.S. Lee, Effect of grain boundary engineering on hydrogen embrittlement in Fe-Mn-C TWIP steel at various strain rates. Corr. Sci 142 (2018), pp. 213–221. doi: 10.1016/j.corsci.2018.07.028
  • L. Tan, K. Sridharan, T.R. Allen, R.K. Nanstad and D.A. McClintock, Microstructure tailoring for property improvements by grain boundary engineering. J. Nucl. Mater 374 (2008), pp. 270–280. doi: 10.1016/j.jnucmat.2007.08.015
  • H. Li, S. Xia, B.X. Zhou, W.J. Chen and J.S. Ni, Evolution of carbide morphology precipitated at grain boundaries in Ni-based Alloy 690. Acta Metall. Sin. (Chin. Lett 45 (2009), pp. 195–198.
  • M. Kurban, U. Erb and K.T. Aust, A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel. Scr. Mater 54 (2006), pp. 1053–1058. doi: 10.1016/j.scriptamat.2005.11.055
  • E.A. Trillo and L.E. Murr, Effects of Carbon Content, Deformation, and Interfacial Energetics on Carbide Precipitation and Corrosion Sensitation in 304 Stainless Steel. Acta Mater. 47 (1998), pp. 235–245. doi: 10.1016/S1359-6454(98)00322-X
  • S. II Downey, P.N. Kalu and K. Han, The effect of heat treatment on the microstructure stability of modified 316LN stainless steel. Mater. Sci. Eng 480A (2008), pp. 96–100. doi: 10.1016/j.msea.2007.07.094

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.