272
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Deformation and annealing behaviour of a low carbon high Mn TWIP steel microalloyed with Ti

, , &
Pages 2487-2516 | Received 23 Mar 2019, Accepted 24 May 2019, Published online: 12 Jun 2019

References

  • S. Vercammen, B. Blanpain, B.C. De Cooman, and P. Wollants, Cold rolling behaviour of an austenitic Fe-30Mn-3Al-3Si TWIP-steel: the importance of deformation twinning. Acta Mater. 52 (2004), pp. 2005–2012. doi: 10.1016/j.actamat.2003.12.040
  • M. Bambach, L. Conrads, M. Daamen, O. Güvenç, and G. Hirt, Enhancing the crashworthiness of high-manganese steel by strain-hardening engineering, and tailored folding by local heat-treatment. Mater. Des 110 (2016), pp. 157–168. doi: 10.1016/j.matdes.2016.07.065
  • Z.Y. Tang, R.D.K. Misra, M. Ma, N. Zan, Z.Q. Wu, and H. Ding, Deformation twinning and martensitic transformation and dynamic mechanical properties in Fe-0.07C-23Mn-3.1Si-2.8Al TRIP/TWIP steel. Mater. Sci. Eng. A 624 (2015), pp. 186–192. doi: 10.1016/j.msea.2014.11.078
  • N.K. Tewary, S.K. Ghosh, S. Bera, D. Chakrabarti, and S. Chatterjee, Influence of cold rolling on microstructure, texture and mechanical properties of low carbon high Mn TWIP steel. Mater. Sci. Eng. A 615 (2014), pp. 405–415. doi: 10.1016/j.msea.2014.07.088
  • K.-T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Le, Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition. Mater. Sci. Eng. A 527 (2010), pp. 3651–3661. doi: 10.1016/j.msea.2010.02.058
  • K.M. Rahman, N.G. Jones, and D. Dye, Micromechanics of twinning in a TWIP steel. Mater. Sci. Eng. A 635 (2015), pp. 133–142. doi: 10.1016/j.msea.2015.03.082
  • I.-J. Park, K.-H. Jeong, J.-G. Jung, C.S. Lee, and Y.-K. Lee, The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe-18Mn-0.6C twinning-induced plasticity steels. Int. J. Hydrogen Energ 37 (2012), pp. 9925–9932. doi: 10.1016/j.ijhydene.2012.03.100
  • T. Dieudonné, L. Marchetti, M. Wery, F. Miserque, M. Tabarant, J. Chêne, C. Allely, P. Cugy, and C.P. Scott, Role of copper and aluminum on the corrosion behavior of austenitic Fe–Mn–C TWIP steels in aqueous solutions and the related hydrogen absorption. Corr. Sci 83 (2014), pp. 234–244. doi: 10.1016/j.corsci.2014.02.018
  • J. Mola, G. Luan, Q. Huang, C. Schimpf, and D. Rafaja, Cementite evolution in medium manganese twinning-induced plasticity steels. Materialia 2 (2018), pp. 138–147. doi: 10.1016/j.mtla.2018.07.013
  • K. Jeong, J.-E. Jin, Y.-S. Jung, S. Kang, and Y.-K. Lee, The effects of Si on the mechanical twinning and strain hardening of Fe–18Mn–0.6C twinning-induced plasticity steel. Acta Mater. 61 (2013), pp. 3399–3410. doi: 10.1016/j.actamat.2013.02.031
  • L. Fu, M. Shan, D. Zhang, H. Wang, W. Wang, and A. Shan, Microstructure evolution and mechanical behavior of a hot-rolled high-manganese dual-phase transformation-induced plasticity/twinning-induced plasticity steel. Metal. Mater. Trans. A 48(5) (2017), pp. 2179–2192. doi: 10.1007/s11661-017-3994-0
  • C. Zheng, N. Xiao, L. Hao, D. Li, and Y. Li, Numerical simulation of dynamic strain-induced austenite–ferrite transformation in a low carbon steel. Acta Mater. 57 (2009), pp. 2956–2968. doi: 10.1016/j.actamat.2009.03.005
  • A. Imandoust, A. Zarei-Hanzaki, S. Heshmati-Manesh, S. Moemeni, and P. Changizian, Effects of ferrite volume fraction on the tensile deformation characteristics of dual phase twinning induced plasticity steel. Mater. Des 53 (2014), pp. 99–105. doi: 10.1016/j.matdes.2013.06.033
  • F. Reyes-Calderón, I. Mejía, and J.M. Cabrera, Hot deformation activation energy (QHW) of austenitic Fe-22Mn-1.5 Al-1.5 Si-0.4 C TWIP steels microalloyed with Nb, V, and Ti.mater. Sci. Eng. A 562 (2013), pp. 46–52. doi: 10.1016/j.msea.2012.10.091
  • D. Li, Y. Feng, S. Song, Q. Liu, Q. Bai, G. Wu, N. Lv, and F. Ren, Influences of Nb-microalloying on microstructure and mechanical properties of Fe–25Mn–3Si–3Al TWIP steel. Mater. Des 84 (2015), pp. 238–244. doi: 10.1016/j.matdes.2015.06.092
  • H. Gwon, J.-K. Kim, B. Jian, H. Mohrbacher, T. Song, S.-K. Kim, and B.C. De Cooman, Partially-recrystallized, Nb-alloyed TWIP steels with a superior strength ductility Balance. Mater. Sci. Eng. A 711 (2018), pp. 130–139. doi: 10.1016/j.msea.2017.11.012
  • E.P. Kwon, D.Y. Kim, and H.K. Park, Deformation twinning in Nb-microalloyed Fe-Mn-C-Al twinning-induced plasticity steel. J. Mater. Eng. Perform 26 (2017), pp. 4500–4507. doi: 10.1007/s11665-017-2898-x
  • N.K. Tewary, S.K. Ghosh, S. Chatterjee, and A. Ghosh, Deformation and annealing behaviour of dual phase TWIP steel from the perspective of residual stress, faults, microstructures and mechanical properties. Mater. Sci. Eng. A 733 (2018), pp. 43–58. doi: 10.1016/j.msea.2018.07.027
  • X. Li, L. Chen, Y. Zhao, and R.D.K. Misra, Influence of manganese content on ε-/α′-martensitic transformation and tensile properties of low-C high-Mn TRIP steels. Mater. Des 142 (2018), pp. 190–202. doi: 10.1016/j.matdes.2018.01.026
  • A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall. Mater. Trans. A 40(13) (2009), pp. 3076–3090. doi: 10.1007/s11661-009-0050-8
  • Y. Lü, D.A. Molodov, and G. Gottstein, Recrystallization kinetics and microstructure evolution during annealing of a cold-rolled Fe-Mn-C alloy. Acta Mater. 59 (2011), pp. 3229–3243. doi: 10.1016/j.actamat.2011.01.063
  • N. Xiao, M. Tong, Y. Lan, D. Li, and Y. Li, Coupled simulation of the influence of austenite deformation on the subsequent isothermal austenite–ferrite transformation. Acta Mater. 54 (2006), pp. 1265–1278. doi: 10.1016/j.actamat.2005.10.055
  • I.N. Levine, Physical Chemistry, 6th ed., McGraw-Hill higher education, New York, USA, 2008.
  • T. Matsushita and K. Mukai, Chemical thermodynamics in materials science: from basics to practical applications, 1st ed. Springer, Singapore, (2018), pp. 17–22. doi:10.1007/978-981-13-0405-7.
  • C. Zheng, D. Raabe, and D. Li, Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low-carbon steel by cellular automaton modelling. Acta Mater. 60 (2012), pp. 4768–4779. doi: 10.1016/j.actamat.2012.06.007
  • T. Schambron, L. Chen, T. Gooch, A. Dehghan-Manshadi, and E.V. Pereloma, Effect of Mo concentration on dynamic recrystallization behavior of low carbon microalloyed steels. Steel Res. Int 84 (2013), pp. 1191–1195. doi: 10.1002/srin.201300035
  • M. Arribas, B. López, and J.M. Rodriguez-Ibabe, Additional grain refinement in recrystallization controlled rolling of Ti-microalloyed steels processed by near-net-shape casting technology. Mater. Sci. Eng. A 485 (2008), pp. 383–394. doi: 10.1016/j.msea.2007.08.015
  • H. Dong and X. Sun, Deformation induced ferrite transformation in low carbon steels. Curr. Opin. Solid State Mater. Sci 9 (2005), pp. 269–276. doi: 10.1016/j.cossms.2006.02.014
  • Y.Q. Weng, X.J. Sun, and H. Dong, Overview on the theory of deformation induced ferrite transformation. Iron and Steel 40 (2005), pp. 9–15.
  • X. Sauvage and Y. Ivanisenko, The role of carbon segregation on nanocrystallisation of pearlitic steels processed by severe plastic deformation. J. Mater. Sci 42 (2007), pp. 1615–1621. doi: 10.1007/s10853-006-0750-z
  • L. Zhao, N. Park, Y. Tian, A. Shibata, and N. Tsuji, Deformation-assisted diffusion for the enhanced kinetics of dynamic phase transformation. Mater. Res. Lett 6 (2018), pp. 641–647. doi: 10.1080/21663831.2018.1527787
  • D.B. Williams and C.B. Carter, Transmission Electron Microscopy. 2nd ed. Springer, New York, USA, 2009.
  • H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques, TEM investigation of the formation mechanism of deformation twins in Fe-Mn-Si-Al TWIP steels. Phil. Mag 93 (2013), pp. 4378–4391. doi: 10.1080/14786435.2013.832837
  • T. Waterschoot, L. Kestens, and B.C. De Cooman, Hot rolling texture development in CMnCrSi dual-phase steels. Metall. Mater. Trans. A 33 (2002), pp. 1091–1102. doi: 10.1007/s11661-002-0211-5
  • C. Haase, S.G. Chowdhury, L.A. Barrales-Mora, D.A. Molodov, and G. Gottstein, On the relation of microstructure and texture evolution in an austenitic Fe-28Mn-0.28 C TWIP steel during cold rolling. Metall. Mater. Trans. A 44 (2013), pp. 911–922. doi: 10.1007/s11661-012-1543-4
  • D. Raabe, Textures of strip cast and hot rolled ferritic and austenitic stainless steel. Mater. Sci. Technol 11 (1995), pp. 461–468. doi: 10.1179/mst.1995.11.5.461
  • M. Zhenli, T. Di, Z. Aimin, and J. Haitao, Mechanical properties and microstructure evolution during deformation of Fe–Mn–C TWIP steel. Steel Res. Int 83 (2012), pp. 346–351. doi: 10.1002/srin.201100322
  • Z. Yanushkevich, A. Belyakov, C. Haase, D.A. Molodov, and R. Kaibyshev, Structural / textural changes and strengthening of an advanced high-Mn steel subjected to cold rolling. Mater. Sci. Eng. A 651 (2016), pp. 763–773. doi: 10.1016/j.msea.2015.11.027
  • Y.F. Shen, N. Jia, R.D.K. Misra, and L. Zuo, Softening behavior by excessive twinning and adiabatic heating at high strain rate in a Fe–20Mn–0.6C TWIP steel. Acta Mater. 103 (2016), pp. 229–242. doi: 10.1016/j.actamat.2015.09.061
  • N.P. Gurao, P. Kumar, B. Bhattacharya, A. Haldar, and S. Suwas, Evolution of crystallographic texture and microstructure during cold rolling of twinning-induced plasticity (TWIP) steel: experiments and simulations. Metall. Mater. Trans. A 43 (2012), pp. 5193–5201. doi: 10.1007/s11661-012-1346-7
  • M. Ashiq, P. Dhekne, A.S. Hamada, P. Sahu, B. Mahato, R.K. Minz, S.G. Chowdhury, and L.P. Karjalainen, Correlation of microstructure and texture in a two-phase high-Mn twinning-induced plasticity steel during cold rolling. Metall. Mater. Trans. A 48 (2017), pp. 4842–4856. doi: 10.1007/s11661-017-4241-4
  • A.A. Saleh, E.V. Pereloma, and A.A. Gazder, Texture evolution of cold rolled and annealed Fe–24Mn-3Al-2Si-1Ni-0.06 C TWIP steel. Mater. Sci. Eng. A 528 (2011), pp. 4537–4549. doi: 10.1016/j.msea.2011.02.055
  • J. Yoo, K. Choi, A. Zargaran, and N.J. Kim, Effect of stacking faults on the ductility of Fe-18Mn-1.5 Al-0.6 C twinning-induced plasticity steel at low temperatures. Scr. Mater 137 (2017), pp. 18–21. doi: 10.1016/j.scriptamat.2017.04.037
  • V. Shterner, I.B. Timokhina, and H. Beladi, On the work-hardening behaviour of a high manganese TWIP steel at different deformation temperatures. Mater. Sci. Eng. A 669 (2016), pp. 437–446. doi: 10.1016/j.msea.2016.05.104
  • H. Gwon, J.-K. Kim, S. Shin, L. Cho, and B.C. De Cooman, The effect of vanadium micro-alloying on the microstructure and the tensile behavior of TWIP steel. Mater. Sci. Eng. A 696 (2017), pp. 416–428. doi: 10.1016/j.msea.2017.04.083
  • J.G. Kim, N.A. Enikeev, J.B. Seol, M.M. Abramova, M.V. Karavaeva, R.Z. Valiev, C.G. Park, and H.S. Kim, Superior strength and Multiple strengthening mechanisms in Nanocrystalline TWIP steel. Sci. Rep 8 (2018), pp. 1–10. doi: 10.1038/s41598-017-17765-5
  • W.S. Choi, B.C. De Cooman, S. Sandlöbes, and D. Raabe, Size and orientation effects in partial dislocation-mediated deformation of twinning-induced plasticity steel micro-pillars. Acta Mater. 98 (2015), pp. 391–404. doi: 10.1016/j.actamat.2015.06.065
  • K. Chung, K. Ahn, D.-H. Yoo, K.-H. Chung, M.-H. Seo, and S.-H. Park, Formability of TWIP (twinning induced plasticity) automotive sheets. Int. J. Plast 27 (2011), pp. 52–81. doi: 10.1016/j.ijplas.2010.03.006
  • J. Kim, S.-J. Lee, and B.C. De Cooman, Effect of Al on the stacking fault energy of Fe–18Mn–0.6 C twinning-induced plasticity. Scr. Mater 65 (2011), pp. 363–366. doi: 10.1016/j.scriptamat.2011.05.014
  • K. Renard, S. Ryelandt, and P.J. Jacques, Characterisation of the Portevin-Le Châtelier effect affecting an austenitic TWIP steel based on digital image correlation. Mater. Sci. Eng. A 527 (2010), pp. 2969–2977. doi: 10.1016/j.msea.2010.01.037
  • S.B. Alapati, W.A. Brantley, T.A. Svec, J.M. Powers, J.M. Nusstein, and G.S. Daehn, Proposed role of embedded dentin chips for the clinical failure of nickel-titanium rotary instruments. J. Endod. 30 (2004), pp. 339–341. doi: 10.1097/00004770-200405000-00008
  • Z.C. Luo, R.D. Liu, X. Wang, and M.X. Huang, The effect of deformation twins on the quasi-cleavage crack propagation in twinning-induced plasticity steels. Acta Mater. 150 (2018), pp. 59–68. doi: 10.1016/j.actamat.2018.03.004
  • A. Das, Fracture complexity of pressure vessel steels. Phil. Mag 97 (2017), pp. 3084–3141. doi: 10.1080/14786435.2017.1367857

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.