198
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Face-centered-cubic to body-centered-cubic phase transformation of Cu nanoplate under [100] tensile loading

, , &
Pages 2517-2530 | Received 13 Dec 2018, Accepted 28 May 2019, Published online: 21 Jun 2019

References

  • E.C. Bain and N.Y. Dunkirk, The nature of martensite. Trans. AIME 70 (1924), pp. 25–47.
  • R. Najafabadi and S. Yip, Observation of finite-temperature bain transformation (f.c.c→r b.c.c) in Monte Carlo simulation of iron. Scr. Metal 17 (1983), pp. 1199–1204. doi: 10.1016/0036-9748(83)90283-1
  • M.I. Haftel and K. Gall, Density functional theory investigation of surface-stress-induced phase transformations in fcc metal nanowires. Phys. Rev. B 74 (2006), pp. 035420 (1-12).
  • C.W. Sinclair and R.G. Hoagland, A molecular dynamics study of the fcc→bcc transformation at fault intersections. Acta Mater. 56 (2008), pp. 4160–4171. doi: 10.1016/j.actamat.2008.04.043
  • C. Engin and H.M. Urbassek, Molecular-dynamics investigation of the fcc→bcc phase transformation in Fe, Comp. Mater. Sci 41 (2008), pp. 297–304.
  • F. Milstein, Theoretical strength of a perfect crystal. Phys. Rev. B 3 (1971), pp. 1130–1141. doi: 10.1103/PhysRevB.3.1130
  • F. Milstein and B. Farber, Theoretical fcc → bcc transition under [100] tensile loading. Phys. Rev. Lett. 44 (1980), pp. 277–280. doi: 10.1103/PhysRevLett.44.277
  • H. Xie, J. Yu, T. Yu, and F. Yin, Face-centred cubic to body-centred cubic phase transformation under [100] tensile loading. Philos. Mag. 98 (2018), pp. 1696–1707. doi: 10.1080/14786435.2018.1456687
  • J.R. Greer and J.T.M. De Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56 (2011), pp. 654–724. doi: 10.1016/j.pmatsci.2011.01.005
  • A. Rinaldi, P. Peralta, C. Friesen and K. Sieradzki, Sample-size effects in the yield behavior of nanocrystalline nickel. Acta Mater. 56 (2008), pp. 511–517. doi: 10.1016/j.actamat.2007.09.044
  • Y. Zhu, Q. Qin, F. Xu, F. Fan, Y. Ding, T. Zhang, B.J. Wiley, and Z.L. Wang, Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments. Phys. Rev. B 85 (2012), pp. 045443 (1-7).
  • G. Ouyang, G. Yang, C. Sun and W. Zhu, Nanoporous structures: Smaller is stronger. Small 4 (2008), pp. 1359–1362. doi: 10.1002/smll.200800129
  • W. Liang and M. Zhou, Atomistic simulations reveal shape memory of fcc metal nanowires. Phys. Rev. B 73 (2006), pp. 115409 (1-11).
  • J. Diao, K. Gall and M.L. Dunn, Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2 (2003), pp. 656–660. doi: 10.1038/nmat977
  • H.S. Park, Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires. Nano Lett. 6 (2006), pp. 958–962. doi: 10.1021/nl060024p
  • K. Gall, J. Diao, M. Dunn and M. Haftel, Tetragonal phase transformation in gold nanowires. J. Eng. Mater. Tech. 127 (2005), pp. 417–422. doi: 10.1115/1.1924558
  • Q. Cheng, H.A. Wu, Y. Wang, and X.X. Wang, Pseudoelasticity of Cu-Zr nanowires via stress-induced martensitic phase transformations. Appl. Phys. Lett. 95 (2009), pp. 021911 (1-3).
  • W. Liang and M. Zhou, Shape memory effect in Cu nanowires. Nano Lett. 5 (2005), pp. 2039–2043. doi: 10.1021/nl0515910
  • J. Lao and D. Moldovan, Surface stress induced structural transformations and pseudoelastic effects in palladium nanowires. Appl. Phys. Lett. 93 (2008), pp. 093108 (1-3). doi: 10.1063/1.2976434
  • H.S. Park, K. Gall, and J. Zimmerman, Shape memory and pseudoelasticity in metal nanowires. Phys. Rev. Lett. 95 (2005), pp. 255504 (1-4).
  • R. Rezaei and C. Deng, Pseudoelasticity and shape memory effects in cylindrical FCC metal nanowires. Acta Mater. 132 (2017), pp. 49–56. doi: 10.1016/j.actamat.2017.04.039
  • H. Xie, F. Yin, T. Yu, G. Lu and Y. Zhang, A new strain-rate-induced deformation mechanism of Cu nanowire: Transition from dislocation nucleation to phase transformation. Acta Mater. 85 (2015), pp. 191–198. doi: 10.1016/j.actamat.2014.11.017
  • D.T. Ho, S.D. Park, S.Y. Kwon, K. Park, and S.Y. Kim, Negative Poisson’s ratio in metal nanoplates. Nat. Commun. 5 (2014), pp. 3255 (1-8).
  • D.T. Ho, S.Y. Kwon, H.S. Park, and S.Y. Kim, Metal nanoplates: Smaller is weaker due to failure by elastic instability. Phys. Rev. B 96 (2017), pp. 184103 (1-10).
  • S. Plimpton and J. Comput, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • S. Plimpton, Large-scale Atomic/Molecular Massively Parallel Simulator, Sandia National Laboratories, Albuquerque, 2007.
  • Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-bingding, and embedded-atom calculations. Phys. Rev. B 63 (2001), pp. 224106 (1-16). doi: 10.1103/PhysRevB.63.224106
  • X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69 (2004), pp. 144113 (1-10).
  • M.I. Mendelev, M.J. Kramer, C.A. Becker and M. Asta, Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag. 88 (2008), pp. 1723–1750. doi: 10.1080/14786430802206482
  • G.J. Ackland, G.I. Tichy, V. Vitek and M.W. Finnis, Simple N-body potentials for the noble-metals and nickel. Philos. Mag. A 56 (1987), pp. 735–756. doi: 10.1080/01418618708204485
  • A. Stukowski, Visualization and analysis of atomic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18 (2010), pp. 015012 (1-7).
  • D. Milathianaki, S. Boutet, G.J. Williams, A. Higginbotham, D. Ratner, A.E. Gleason, M. Messerschmidt, M.M. Seibert, D.C. Swift, P. Hering, J. Robinson, W.E. White and J.S. Wark, Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342 (2013), pp. 220–223. doi: 10.1126/science.1239566
  • A.S.J. Koh and H. Lee, Shock-induced localized amorphization in metallic nanorods with strain-rate-dependent characteristics. Nano Lett. 6 (2006), pp. 2260–2267. doi: 10.1021/nl061640o
  • M. Born, On the stability of crystal lattices. I. Proc. Cambridge Phil. Soc. 36 (1940), pp. 160–172. doi: 10.1017/S0305004100017138
  • R. Hill and F. Milstein, Principles of stability analysis of ideal crystals. Phys. Rev. B 15 (1977), pp. 3087–3096. doi: 10.1103/PhysRevB.15.3087
  • J. Wang, J. Li, S. Yip, S.R. Phillpot and D. Wolf, Crystal instabilities at finite strain. Phys. Rev. Lett. 71 (1993), pp. 4182–4185. doi: 10.1103/PhysRevLett.71.4182
  • J. Wang, J. Li, S. Yip, S.R. Phillpot and D. Wolf, Mechanical instabilities of homogeneous crystals. Phys. Rev. B 52 (1995), pp. 12627–12635. doi: 10.1103/PhysRevB.52.12627
  • J. Diao, K. Gall, and M.L. Dunn, Surface stress driven reorientation of gold nanowires. Phys. Rev. B 70 (2004), pp. 075413 (1-9). doi: 10.1103/PhysRevB.70.075413

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.