153
Views
9
CrossRef citations to date
0
Altmetric
Part A: Materials Science

An insight into the viscosity prediction of ternary alloys with limited solubility

ORCID Icon, , &
Pages 2408-2423 | Received 12 Apr 2019, Accepted 06 Jun 2019, Published online: 21 Jun 2019

References

  • R.F. Brooks, A.T. Dinsdale and P.N. Quested, The measurement of viscosity of alloys—a review of methods, data and models. Meas. Sci. Technol. 16 (2005), pp. 354–362. doi: 10.1088/0957-0233/16/2/005
  • W. Chen, L. Zhang, Y. Du and B. Huang, Viscosity and diffusivity in melts: from unary to multicomponent systems. Philos. Mag. 94 (2014), pp. 1552–1577. doi: 10.1080/14786435.2014.890755
  • J. Brillo, Thermophysical Properties of Multicomponent Liquid Alloys, De Gruyter, 2016.
  • Y. Shen, K. Yasui, T. Zhu and M. Ashokkumar, A model for the effect of bulk liquid viscosity on cavitation bubble dynamics. Phys. Chem. Chem. Phys. 19 (2017), pp. 20635–20640. doi: 10.1039/C7CP03194G
  • N. Masoumi, N. Sohrabi and A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids. J. Phys. D: Appl. Phys. 42 (2009), pp. 055501. doi: 10.1088/0022-3727/42/5/055501
  • D. Giordano and D.B. Dingwell, Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet. Sci. Lett. 208 (2003), pp. 337–349. doi: 10.1016/S0012-821X(03)00042-6
  • A.T. Dinsdale and P.N. Quested, The viscosity of aluminium and its alloys—A review of data and models. J. Mater. Sci. 39 (2004), pp. 7221–7228. doi: 10.1023/B:JMSC.0000048735.50256.96
  • T. Iida and R.I.L. Guthrie, The thermophysical properties of metallic liquids-Volume1 Fundamentals. 1. (2015).
  • M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun and M. Asta, Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 83 (2003), pp. 3977–3994. doi: 10.1080/14786430310001613264
  • Y. Miura, K. Nagao and M. Shirai, Atomic disorder effects on half-metallicity of the full-Heusler alloys Co2(Cr1−xFex)Al: a first-principles study. Physical Review B 69 (2004).
  • J. Cheng, J. Groebner, N. Hort, K. Kainer and R. Schmid-Fetzer, Measurement and calculation of the viscosity of metals—a review of the current status and developing trends. Meas. Sci. Technol. 25 (2014), pp. 062001. doi: 10.1088/0957-0233/25/6/062001
  • A. Dogan and H. Arslan, Geometric modelling of viscosity of copper-containing liquid alloys. Philos. Mag 96 (2016), pp. 459–472. doi: 10.1080/14786435.2015.1133938
  • A. Dogan and H. Arslan, Thermophysical properties of Cu–In–Sn liquid Pb-free alloys: viscosity and surface tension. Philos. Mag 98 (2018), pp. 37–53. doi: 10.1080/14786435.2017.1392053
  • Y. Liu, X. Lv and C. Bai, Evaluation model for viscosity of Fe–Ni–Cr alloys using Gibbs free energy of mixing and geometric methods. ISIJ Int. 57 (2017), pp. 1296–1302. doi: 10.2355/isijinternational.ISIJINT-2016-215
  • D. Živković and D. Manasijević, An optimal method to calculate the viscosity of simple liquid ternary alloys from the measured binary data. Calphad 29 (2005), pp. 312–316. doi: 10.1016/j.calphad.2005.08.002
  • Y. Liu, X. Lv, C. Bai, P. Lai and J. Wang, Viscosity evaluation of Fe–Ni–Co ternary alloy from the measured binary systems. J. Ind. Eng. Chem 30 (2015), pp. 106–111. doi: 10.1016/j.jiec.2015.05.009
  • Q. Shu, L. Wang and K.C. Chou, Estimation of viscosity for some silicate ternary slags. J. Min. Metall. Sect. B. 50 (2014), pp. 139–144. doi: 10.2298/JMMB130218014S
  • X.M. Zhong, Y.H. Liu, K.C. Chou, X.G. Lu, D. Zivkovic and Z. Zivkovic, Estimating ternary viscosity using the thermodynamic geometric model. J. Phase Equilib. 24 (2003), pp. 7–11. doi: 10.1007/s11669-003-0002-8
  • S. Knott and P. Terzieff, Calculation of the viscosity of the liquid ternary Ag–Au–Sn system. Int. J. Mater. Res. 101 (2010), pp. 834–838. doi: 10.3139/146.110345
  • R. M’chaar, S. Belmoujoud, A. Sabbar, M. El Moudane and A. Ghanimi, Modeling of some physicochemical properties in the liquid Au–Bi–Sn alloys relevant for Pb-free soldering. Journal of Theoretical and Computational Chemistry 16 (2017), pp. 1750015. doi: 10.1142/S0219633617500158
  • A. Yakymovych, V. Vus and S. Mudry, Viscosity of liquid Cu–In–Sn alloys. J. Mol. Liq. 219 (2016), pp. 845–850. doi: 10.1016/j.molliq.2016.04.055
  • Y. Ouyang, X. Zhong, Y. Du, Z. Jin, Y. He and Z. Yuan, Formation enthalpies of Fe–Al–RE ternary alloys calculated with a geometric model and Miedema's theory. J. Alloys Compd. 416 (2006), pp. 148–154. doi: 10.1016/j.jallcom.2005.08.055
  • Y. Ouyang, X. Zhong, Y. Du, Y. Feng and Y. He, Enthalpies of formation for the Al–Cu–Ni–Zr quaternary alloys calculated via a combined approach of geometric model and Miedema theory. J. Alloys Compd. 420 (2006), pp. 175–181. doi: 10.1016/j.jallcom.2005.10.047
  • Z. Qiao, L. Yan, Z. Cao and Y. Xie, Surface tension prediction of high-temperature melts. J. Alloys Compd. 325 (2001), pp. 180–189. doi: 10.1016/S0925-8388(01)01362-7
  • D. Živković, Ž Živković and Y.H. Liu, Comparative study of thermodynamic predicting methods applied to the Pb–Zn–Ag system. J. Alloys Compd. 265 (1998), pp. 176–184. doi: 10.1016/S0925-8388(97)00421-0
  • H.A. Barnes, Shearthickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33 (1989), pp. 329–366. doi: 10.1122/1.550017
  • L. Wu, M. Ek, M. Song and D. Sichen, , The effect of solid particles on liquid viscosity. Steel Res. Int. 82 (2011), pp. 388–397. doi: 10.1002/srin.201000207
  • C. Kuo-Chih, Recent development of study in metallurgical melts [C]. Asia Steel International Conference 2015. 2015. Yokohama, Japan.
  • K.C. Chou, Calculation of physicochemical properties for ternary system, in the 4th China United States Symposium on Energy. 2017: Shanghai, China.
  • K.-C. Chou and Z.-G. Yu, Calculation of the physicochemical properties for ternary solution with limited solubility. Ceramics International (2018).
  • Z.-G. Yu, H.-Y. Leng, L.-J. Wang and K.-C. Chou, Computational study on various properties of CaO–Al2O3–SiO2 mold flux. Ceram. Int 45 (2019), pp. 7180–7187. doi: 10.1016/j.ceramint.2018.12.225
  • F. Kohler, Estimation of the thermodynamic data for a ternary system from the corresponding binary systems. Monatsh. Chem 91 (1960), pp. 738–740. doi: 10.1007/BF00899814
  • Y.M. Muggianu, M. Gambino and J.P. Bros, Enthalpies of formation of liquid alloy bismuth-gallium-tin at 723 K. choice of an analytical representation of integral and partial excess functions of mixing. J. Chim. Phys 72 (1975), pp. 83–88. doi: 10.1051/jcp/1975720083
  • K.C. Chou, A new solution model for predicting ternary thermodynamic properties. Calphad 11 (1987), pp. 293–300. doi: 10.1016/0364-5916(87)90048-4
  • G.W. Toop, Predicting ternary activities using binary data. Trans. Metall. Soc. AIME 233 (1965), pp. 850–855.
  • M. Hillert, Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. Calphad 4 (1980), pp. 1–12. doi: 10.1016/0364-5916(80)90016-4
  • K.C. Chou, A general solution model for predicting ternary thermodynamic properties. Calphad 19 (1995), pp. 315–325. doi: 10.1016/0364-5916(95)00029-E
  • R. Lück, U. Gerling and B. Predel, Interpolation Algorithms for thermodynamic Functions of mixtures in multicomponent systems from binary boundary systems. Z. Metallkd 77 (1986), pp. 442.
  • K.C. Chou and Y.A. Chang, A study of ternary geometrical models. Ber. Bunsenges. Phys. Chem 93 (1989), pp. 735–741. doi: 10.1002/bbpc.19890930615
  • K.C. Chou, W.C. Li, F.S. Li and M.H. He, Formalism of new ternary model expressed in terms of binary regular-solution type parameters. Calphad 20 (1996), pp. 395–406. doi: 10.1016/S0364-5916(97)00002-3
  • K.C. Chou and S.K. Wei, A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries. Metall. Mater. Trans B 28 (1997), pp. 439–445. doi: 10.1007/s11663-997-0110-7
  • H. Kobatake, J. Schmitz and J. Brillo, Density and viscosity of ternary Al–Cu–Si liquid alloys. J. Mater. Sci. 49 (2014), pp. 3541–3549. doi: 10.1007/s10853-014-8072-z
  • F. Zhang, Y. Du, S. Liu and W. Jie, Modeling of the viscosity in the AL–Cu–Mg–Si system: Database construction. Calphad 49 (2015), pp. 79–86. doi: 10.1016/j.calphad.2015.04.001
  • C.-Y. He, Y. Du, H.-L. Chen and H. Xu, Experimental investigation and thermodynamic modeling of the Al–Cu–Si system. Calphad 33 (2009), pp. 200–210. doi: 10.1016/j.calphad.2008.07.015
  • N.Y. Konstantinova and P.S. Popel, Kinematic viscosity of liquid Al–Cu alloys. J. Phys: Conf. Ser. 98 (2008), pp. 062022.
  • Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, S. Eckert, B. Willers and K. Eigenfeld, Density, viscosity, and electrical conductivity of hypoeutectic Al–Cu liquid alloys. Metallurgical and Materials Transactions A 39 (2008), pp. 3040–3045. doi: 10.1007/s11661-008-9659-2
  • M. Schick, J. Brillo, I. Egry and B. Hallstedt, Viscosity of Al–Cu liquid alloys: measurement and thermodynamic description. J. Mater. Sci. 47 (2012), pp. 8145–8152. doi: 10.1007/s10853-012-6710-x
  • M. Hillert and C. Qiu, A reassessment of the Cr–Fe–Ni system. Metall. Trans. A 21 (1990), pp. 1673–1680. doi: 10.1007/BF02672583

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.