112
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Estimation of the viscosities of melt for Sn-based ternary lead-free solder alloys

&
Pages 2531-2544 | Received 05 Dec 2018, Accepted 10 Jun 2019, Published online: 21 Jun 2019

References

  • S. Choi, J.P. Lucas, K.N. Subramanian, and T.R. Bieler, Formation and growth of interfacial intermetallic layers in eutectic Sn-Ag solder and its composite solder joints, J. Mater. Sci. Mater. Electron. 11 (2000), pp. 497–502. doi: 10.1023/A:1008968518512
  • F. Zhu, H. Zhang, R. Guan, and S. Liu, Investigation of microstructures and tensile properties of a Sn-Cu lead-free solder alloy, J. Mater. Sci. Mater. Electron. 17 (2006), pp. 379–384. doi: 10.1007/s10854-006-7474-3
  • Y.-H. Hu, S.-B. Xue, H. Wang, H. Ye, Z.-X. Xiao, and L.-L. Gao, Effects of rare earth element Nd on the solderability and microstructure of Sn–Zn lead-free solder, J. Mater. Sci. Mater. Electron. 22 (2011), pp. 481–487. doi: 10.1007/s10854-010-0163-2
  • Y. Plevachuk, W. Hoyer, I. Kaban, M. Köhler, and R. Novakovic, Experimental study of density, surface tension, and contact angle of Sn–Sb-based alloys for high temperature soldering, J. Mater. Sci. 45 (2010), pp. 2051–2056. doi: 10.1007/s10853-009-4120-5
  • W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo, Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy, J. Electron. Mater. 37 (2008), pp. 982–991. doi: 10.1007/s11664-008-0458-8
  • I.E. Anderson, J. Walleser, and J.L. Harringa, Observations of nucleation catalysis effects during solidification of SnAgCuX solder joints, JOM. 59 (2007), pp. 38–43. doi: 10.1007/s11837-007-0087-3
  • J.M. Song, T.S. Lui, Y.L. Chang, and L.H. Chen, Compositional effects on the microstructure and vibration fracture properties of Sn–Zn–Bi alloys, J. Alloy Compd. 403 (2005), pp. 191–196. doi: 10.1016/j.jallcom.2005.05.016
  • M. He and V.L. Acoff, Effect of reflow and thermal aging on the microstructure and microhardness of Sn-3.7Ag-xBi solder alloys, J. Electron. Mater. 35 (2006), pp. 2098–2106. doi: 10.1007/s11664-006-0319-2
  • L. Zhang, S.B. Xue, L.L. Gao, G. Zeng, Y. Chen, Y.U. Sheng-Lin, and Z. Sheng, Creep behavior of SnAgCu solders with rare earth Ce doping, T. Nonferr. Metal. Soc. 20 (2010), pp. 412–417. doi: 10.1016/S1003-6326(09)60155-2
  • C.M.T. Law, C.M.L. Wu, D.Q. Yu, L. Wang, and J.K.L. Lai, Microstructure, solderability, and growth of intermetallic compounds of Sn-Ag-Cu-RE lead-free solder alloys, J. Electron. Mater. 35 (2006), pp. 89–93. doi: 10.1007/s11664-006-0189-7
  • T. Iida and R.I.L. Gutherie, The Physical Properties of Liquid Metals, A.P. Xian, L.W. Wang (Trans.), Science Press, Beijing, 2006 (in Chinese).
  • J.H. Lee and N.L. Dong, Use of thermodynamic data to calculate surface tension and viscosity of Sn-based soldering alloy systems, J. Electron. Mater. 30 (2001), pp. 1112–1119. doi: 10.1007/s11664-001-0137-5
  • Z. Moser, W. Gąsior, J. Pstruś, I. Kaban, and W. Hoyer, Thermophysical properties of liquid In–Sn alloys, Int. J. Thermophys. 30 (2009), pp. 1811–1822. doi: 10.1007/s10765-009-0663-6
  • L.J. Wittenberg, D. Ofte, W.G. Rohr, and D.V. Rigney, Density and viscosity of liquid Pu-U alloys, Metall. Mater. Trans. B. 2 (1971), pp. 287–290. doi: 10.1007/BF02662672
  • B.C. Anusionwu, Theoretical investigation of the viscosity of some liquid metals and alloys, Phys. Chem. Liq. 49 (2011), pp. 247–258. doi: 10.1080/00319100903539520
  • Y.H. Liu, Density and viscosity of molten Zn-Al alloys, Metall. Mater. Trans. A. 37 (2006), pp. 2767–2771. doi: 10.1007/BF02586109
  • J. Wang, C. Li, C. Guo, Z. Du, and B. Wu, Thermodynamic assessment of the Bi–Er and the Bi–Dy systems, Thermochim. Acta. 566 (2013), pp. 44–49. doi: 10.1016/j.tca.2013.05.024
  • T. Du, L.M. Wang, Y.M. Wu, Y.Q. Zhang, and A.S. Liu, Thermodynamic behaviour of Fe-S-RE,Fe-Csat.-S-RE,Ni-S-RE,Cu-S-RE solutions, J. Mater. Sci. Technol. 9 (1993), pp. 68–70.
  • J. Wang, C.P. Wang, X.J. Liu, Y.Q. Ma, I. Ohnuma, R. Kainuma, and K. Ishida, Experimental determination and thermodynamic calculation of the phase equilibria in the Co-Mo-W system, Intermetallics. 17 (2009), pp. 642–650. doi: 10.1016/j.intermet.2009.02.004
  • K.C. Chou, and S.K. Wei, A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries, Metall. Mater. Trans. B. 28 (1997), pp. 439–445. doi: 10.1007/s11663-997-0110-7
  • S. Morioka, Evaluation of the viscosity for binary and ternary liquid alloys, Mat. Sci. Eng. A. 362 (2003), pp. 223–227. doi: 10.1016/S0921-5093(03)00619-1
  • S. Seetharaman and D. Sichen, Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing, Metall. Mater. Trans. B. 25 (1994), pp. 589–595. doi: 10.1007/BF02650079
  • E.N. da C. Andrade, LVIII. A theory of the viscosity of liquids.—Part II, Philosophical Magazine Series 7, 17 (1934), pp. 698–732.
  • R.N. Singh and F. Sommer, Viscosity of liquid alloys: generalization of Andrade’s equation, Monatsh Chemie. 143 (2012), pp. 1235–1242. doi: 10.1007/s00706-012-0728-2
  • G. Kaptay, Presented at the Proceedings of micro CAD2003 Conference, Section Metallurgy, University of Miskolc, 2003, pp. 23–28.
  • I. Budai, M.Z. Benkő, and G. Kaptay, Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys, Mater. Sci. Forum. 537–538 (2007), pp. 489–496. doi: 10.4028/www.scientific.net/MSF.537-538.489
  • E.A. Moelwyn-Hughes, Physical Chemistry, Pergamon Press, Oxford, 1961.
  • D. Žvivković, A new approach to estimate the viscosity of the ternary liquid alloys using the Budai–Benkő–Kaptay equation, Metall. Mater. Trans. B. 39 (2008), pp. 395–398. doi: 10.1007/s11663-008-9150-x
  • D. Žvivković, Application of the Kaptay model in calculation of ternary liquid alloys’ viscosities, Int. J. Mater. Res. 99 (2008), pp. 748–750. doi: 10.3139/146.101696
  • J. Brillo, R. Brooks, I. Egry, and P. Quested, Viscosity measurement of liquid ternary Cu-Ni-Fe alloys by an oscillating cup viscometer and comparison with models, Int. J. Mater. Res. 98 (2007), pp. 457–462. doi: 10.3139/146.101494
  • H. Kobatake, J. Schmitz, and J. Brillo, Density and viscosity of ternary Al–Cu–Si liquid alloys, J. Mater. Sci. 49 (2014), pp. 3541–3549. doi: 10.1007/s10853-014-8072-z
  • M. Wu, and X. Su, Estimation of the viscosities of liquid binary alloys, Mater. Res. Express. 5 (2018), pp. 016501. doi: 10.1088/2053-1591/aa9e9e
  • M. Hirai, Estimation of viscosities of liquid alloys, Iron Steel Inst. Jpn. Int. 33 (1993), pp. 251–258. doi: 10.2355/isijinternational.33.251
  • F. KohIer, Zur Berechnung der thermodynamischen Daten eines ternaren Systems aus den zugehorigen binaren Systemen, Monatsh. Chem. verw. Teile anderer Wiss. 91 (1960), pp. 738–740. doi: 10.1007/BF00899814
  • G. Toop, Predicting ternary activities using binary data, Trans. Metall. Soc. AIME. 233 (1965), pp. 850–855.
  • Y.-M. Muggianu, M. Gambino, and J-P. Bros, Enthalpies de formation des alliages liquids bismuth-etain-gallium a 723 k. Choix dune representation analytique des grandeurs d'exces integrates et partielles de melange, J. Chim. Physique. 72 (1975), pp. 83–88. doi: 10.1051/jcp/1975720083
  • K.C. Chou, A new solution model for predicting ternary thermodynamic properties, Calphad. 11 (1987), pp. 293–300. doi: 10.1016/0364-5916(87)90048-4
  • A.R. Miedema, P.F. De Châtel, and F.R. De Boer, Cohesion in alloys-fundamentals of a semi-empirical model, Physica. 100B (1980), pp. 1–28.
  • N. Seizo and H. Makoto, Binary Alloy State Atlas, Metallurgy Industry Press, Beijing, 2004 (in Chinese).
  • N.Y. Chen, The Bond Parameter Function and its Application, Science Press, Beijing, 1976 (in Chinese).
  • X. Wang, H. Bao, and W. Li, Estimation of viscosity of ternary-metallic melts, Metall. Mater. Trans. A. 33 (2002), pp. 3201–3204. doi: 10.1007/s11661-002-0305-0
  • Y. Plevachuk, V. Sklyarchuk, W. Hoyer, and I. Kaban, Electrical conductivity, thermoelectric power and viscosity of liquid Sn-based alloys, J. Mater. Sci. 41 (2006), pp. 4632–4635. doi: 10.1007/s10853-006-0053-4
  • T. Gancarz, Physicochemical properties of Sb-Sn-Zn alloys, J. Electron. Mater. 43 (2014), pp. 4374–4385. doi: 10.1007/s11664-014-3320-1
  • X.D. Wang, and W.C. Li, Models to estimate viscosities of ternary metallic melts and their comparisons, Sci. China Chem. 46 (2003), pp. 280–289. doi: 10.1360/02yb0134
  • B.W. Zhang, W.Y. Hu, and X.L. Shu, Theory of Embedded Atom Method and its Application to Materials Science-Atomic Scale Materials Design Theory, Hunan University Press, Changsha, 2003 (in Chinese).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.