195
Views
19
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The effect of hardening by annealing in ultrafine-grained Al–0.4Zr alloy: influence of Zr microadditives

, , , &
Pages 2424-2443 | Received 02 Apr 2019, Accepted 07 Jun 2019, Published online: 21 Jun 2019

References

  • A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53 (2008), pp. 893–979. doi: 10.1016/j.pmatsci.2008.03.002
  • R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51 (2006), pp. 881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • N. Kamikawa, X. Huang, N. Tsuji and N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 57 (2009), pp. 4198–4208. doi: 10.1016/j.actamat.2009.05.017
  • R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45 (2000), pp. 103–189. doi: 10.1016/S0079-6425(99)00007-9
  • I. Sabirov, M.Y. Murashkin and R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Mater. Sci. Eng. A 560 (2013), pp. 1–24. doi: 10.1016/j.msea.2012.09.020
  • R.Z. Valiev, M.Y. Murashkin and I. Sabirov, A nanostructural design to produce high strength Al alloys with enhanced electrical conductivity. Scr. Mater. 76 (2014), pp. 13–16. doi: 10.1016/j.scriptamat.2013.12.002
  • X. Huang, N. Hansen and N. Tsuji, Hardening by annealing and softening by deformation in Nanostructured metals. Science 312 (2006), pp. 249–251. doi: 10.1126/science.1124268
  • A.M. Mavlyutov, T.A. Latynina, M.Y. Murashkin, R.Z. Valiev and T.S. Orlova, Effect of annealing on the microstructure and mechanical properties of ultrafine-grained commercially pure Al. Phys. Solid State 59 (2017), pp. 1970–1977. doi: 10.1134/S1063783417100274
  • T.S. Orlova, N.V. Skiba, A.M. Mavlyutov, R.Z. Valiev, M.Y. Murashkin and M.Y. Gutkin, Hardening by annealing and implementation of high ductility of ultra-fine grained aluminum: experiment and theory. Rev. Adv. Mater. Sci. 57 (2018), pp. 224–240. doi: 10.1515/rams-2018-0068
  • A.A. Nazarov, A.E. Romanov and R.Z. Valiev, On the structure, stress fields and energy of nonequilibrium grain boundaries. Acta Mater. 41 (1993), pp. 1033–1040. doi: 10.1016/0956-7151(93)90152-I
  • X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita and R.Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng. A 540 (2012), pp. 1–12. doi: 10.1016/j.msea.2012.01.080
  • R.Z. Valiev, A.V. Korznikov and R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A 168 (1993), pp. 141–148. doi: 10.1016/0921-5093(93)90717-S
  • Y. Amouyal and E. Rabkin, A scanning force microscopy study of grain boundary energy in copper subjected to equal channel angular pressing. Acta Mater. 55 (2007), pp. 6681–6689. doi: 10.1016/j.actamat.2007.08.023
  • T.S. Orlova, A.V. Ankudinov, A.M. Mavlyutov and N.N. Resnina, Effect of grain boundaries on the electron work function of ultrafine grained aluminum. Rev. Adv. Mater. Sci. 57 (2018), pp. 110–115. doi: 10.1515/rams-2018-0053
  • A.A. Popov, I.Y. Pyshmintsev, S.L. Demakov, A.G. Illarionov, T.C. Lowe, A.V. Sergeyeva and R.Z. Valiev, Structural and mechanical properties of nanocrystalline titanium processed by severe plastic deformation. Scr. Mater. 37 (1997), pp. 1089–1097. doi: 10.1016/S1359-6462(97)00210-8
  • R.Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapelski and B. Baudelet, The Hall-Petch relation in submicro-grained Al-1.5% Mg alloy. Scr. Mater. 27 (1992), pp. 855–860. doi: 10.1016/0956-716X(92)90405-4
  • J. Languillaume, F. Chmelik, G. Kapelski, F. Bordeaux, A.A. Nazarov, G. Canova, C. Esling, R.Z. Valiev and B. Baudelet, Microstructures and hardness of ultrafine-grained Ni3Al. Acta Mater. 41 (1993), pp. 2953–2962. doi: 10.1016/0956-7151(93)90110-E
  • P. Ilario, Machine for the continuous casting of metal rods, US 2659948 (1953).
  • R.J. Schoerner, Method of fabricating aluminum alloy rod, US 3670401 (1972).
  • G.K. Williamson and R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1 (1956), pp. 34–46. doi: 10.1080/14786435608238074
  • F.J. Humphreys, Quantitative metallography by electron backscattered diffraction. J. Microsc. 195 (1999), pp. 170–185. doi: 10.1046/j.1365-2818.1999.00578.x
  • T.S. Orlova, A.M. Mavlyutov, A.S. Bondarenko, I.A. Kasatkin, M.Y. Murashkin and R.Z. Valiev, Influence of grain boundary state on electrical resistivity of ultrafine grained aluminium. Philos. Mag. 96 (2016), pp. 2429–2444. doi: 10.1080/14786435.2016.1204022
  • A.M. Mavlyutov, A.S. Bondarenko, M.Y. Murashkin, E.V. Boltynjuk, R.Z. Valiev and T.S. Orlova, Effect of annealing on microhardness and electrical resistivity of nanostructured SPD aluminium. J. Alloy. Compd 698 (2017), pp. 539–546. doi: 10.1016/j.jallcom.2016.12.240
  • A.A. Nazarov, Kinetics of grain boundary recovery in deformed polycrystals. Interface Sci. 8 (2000), pp. 315–322. doi: 10.1023/A:1008720710330
  • T.J. Rupert, J.R. Trelewicz and C.A. Schuh, Grain boundary relaxation strengthening of nanocrystalline Ni–W alloys. J. Mater. Res. 27 (2012), pp. 1285–1294. doi: 10.1557/jmr.2012.55
  • N.A. Belov, A.N. Alabin, I.A. Matveeva and D.G. Eskin, Effect of Zr additions and annealing temperature on electrical conductivity and hardness of hot rolled Al sheets. Trans. Nonferrous Met. Soc. China 25 (2015), pp. 2817–2826. doi: 10.1016/S1003-6326(15)63907-3
  • T.S. Orlova, A.M. Mavlyutov, T.A. Latynina, E.V. Ubyivovk, M.Y. Murashkin, R. Schneider, D. Gerthsen and R.Z. Valiev, Influence of severe plastic deformation on microstructure, strength and electrical conductivity of aged Al–0.4Zr(wt.%) alloy. Rev. Adv. Mater. Sci. 55 (2018), pp. 92–101. doi: 10.1515/rams-2018-0032
  • O.R. Myhr, O. Grong and S.J. Andersen, Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater. 49 (2001), pp. 65–75. doi: 10.1016/S1359-6454(00)00301-3
  • K.E. Knipling, D.C. Dunand and D.N. Seidman, Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425 C. Acta Mater. 56 (2008), pp. 114–127. doi: 10.1016/j.actamat.2007.09.004
  • D.V. Bachurin and A.A. Nazarov, Relaxation of nonequilibrium grain boundary structure in nanocrystals. Phys. Met. Metall. 97 (2004), pp. 133–136.
  • H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer, Berlin, 2007.
  • A. Paul, T. Laurila, V. Vuorinen and S.V. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer Int. Publ., Switzerland, 2014.
  • T.E. Volin and R.W. Balluffi, Annealing kinetics of voids and self-diffusion coefficient in aluminum. Phys. Stat. Sol. 25 (1968), pp. 163–117. doi: 10.1002/pssb.19680250116
  • A.V. Veckman, B.F. Demyanov and I.A. Shmakov, Coefficients of self-diffusion on grain Borders in aluminium (computer Calculation). Izvestiya Altajskogo Gosudarstvennogo Universiteta 77 (2013), pp. 141–145. (in Russian).
  • F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Boston, 2004.
  • A.A. Nazarov, Grain-Boundary diffusion in Nanocrystals with a time-Dependent diffusion coefficient. Phys. Solid State 45 (2003), pp. 1166–1169. doi: 10.1134/1.1583809
  • W. Lefebvre, N. Masquelier, J. Houard, R. Patte and H. Zapolsky, Tracking the path of dislocations across ordered Al3Zr nanoprecipitates in three dimensions. Scripta Mater 70 (2014), pp. 43–46. doi: 10.1016/j.scriptamat.2013.09.014
  • S.Y. Jiang and R.H. Wang, Manipulating nanostructure to simultaneously improve the electrical conductivity and strength in microalloyed Al-Zr conductors. Sci. Rep. 8 (2018), pp. 6202-1–6202-13.
  • P.L. Rossiter, The Electrical Resistivity of Metals and Alloys, Cambridge University Press, Cambridge, 2003.
  • F. Kutner and G. Lang, Effect of addition elements and heat-treatment on the specific electrical resistivity. Aluminum 52 (1976), pp. 322–326.
  • C.B. Fuller, D.N. Seidman and D.C. Dunand, Mechanical properties of Al (Sc, Zr) alloys at ambient and elevated temperatures. Acta Mater. 51 (2003), pp. 4803–4814. doi: 10.1016/S1359-6454(03)00320-3
  • M.A. Meyers and K.K. Chawla, Mechanical Metallurgy: Principles and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1984.
  • N. Hansen and X. Huang, Microstructure and flow stress of polycrystals and single crystals. Acta Mater. 46 (1998), pp. 1827–1836. doi: 10.1016/S1359-6454(97)00365-0
  • A.J. Detor and C.A. Schuh, Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22 (2007), pp. 3233–3248. doi: 10.1557/JMR.2007.0403
  • Y. Huang, J.D. Robson and P.B. Prangnell, The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al–4 wt.% Cu alloy. Acta Mater. 58 (2010), pp. 1643–1657. doi: 10.1016/j.actamat.2009.11.008
  • L. Jiang, J.K. Li, P.M. Cheng, G. Liu, R.H. Wang, B.A. Chen, J.Y. Zhang, J. Sun, M.X. Yang, and G. Yang, Microalloying ultrafine grained Al alloys with enhanced ductility. Sci. Rep. 4 (2014), pp. 3605-1–3605-6.
  • T. Hu, K. Ma, T.D. Topping, J.M. Schoenung and E.J. Lavernia, Precipitation phenomena in an ultrafine-grained Al alloy. Acta Mater. 61 (2013), pp. 2163–2178. doi: 10.1016/j.actamat.2012.12.037
  • K.E. Knipling, D.N. Seidman and D.C. Dunand, Ambient- and high-temperature mechanical properties of isochronally aged Al–0.06Sc, Al–0.06Zr and Al–0.06Sc–0.06Zr (at.%) alloys. Acta Mater. 59 (2011), pp. 943–954. doi: 10.1016/j.actamat.2010.10.017
  • I.A. Ovid’ko and A.B. Reizis, Grain-boundary dislocation climb and diffusion in nanocrystalline solids. Phys. Solid State 43 (2001), pp. 35–38. doi: 10.1134/1.1340182
  • H. Gleiter, Nanocrystalline materials. Prog. Mater. Sci. 33 (1989), pp. 223–315. doi: 10.1016/0079-6425(89)90001-7
  • A. Gupta, V. Kulitcki, B.T. Kavakbasi, Y. Buranova, J. Neugebauer, G. Wilde, T. Hickel, and S.V. Divinski, Precipitate-induced nonlinearities of diffusion along grain boundaries in Al-based Alloys. Phys. Rev. Mater. 2 (2018), pp. 073801-1–073801-16.
  • Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh and A. Hamza, Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scr. Mater. 51 (2004), pp. 1023–1028. doi: 10.1016/j.scriptamat.2004.08.015
  • G.B. Rathmayr and R. Pippan, Influence of impurities and deformation temperature on the saturation microstructure and ductility of HPT-deformed nickel. Acta Mater. 59 (2011), pp. 7228–7240. doi: 10.1016/j.actamat.2011.08.023
  • R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, V.U. Kazykhanov and X. Sauvage, On the origin of extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr. Mater. 63 (2010), pp. 949–952. doi: 10.1016/j.scriptamat.2010.07.014
  • D.I. Beliy, Aluminum alloys for cable conductors. Kabeli i provoda 332 (2012), pp. 8–15. (in Russian).
  • K.E. Knipling, D.C. Dunand and D.N. Seidman, Criteria for developing castable, creep resistant aluminum-based alloys–A review. Z. Metallk 97 (2006), pp. 246–265. doi: 10.3139/146.101249

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.