277
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Rates of diffusion controlled reactions for one-dimensionally-moving species in 3D space

&
Pages 2562-2583 | Received 14 Feb 2019, Accepted 11 Jun 2019, Published online: 30 Jun 2019

References

  • C. Woo and B. Singh, The concept of production bias and its possible role in defect accumulation under cascade damage conditions, Phys. Status Solidi (b) 159 (1990), pp. 609–616. doi: 10.1002/pssb.2221590210
  • G. Greenwood, A. Foreman, and D. Rimmer, The role of vacancies and dislocations in the nucleation and growth of gas bubbles in irradiated fissile material, J. Nucl. Mater. 1 (1959), pp. 305–324. doi: 10.1016/0022-3115(59)90030-3
  • C. Cawthorne and E. Fulton, Voids in irradiated stainless steel, Nature 216 (1967), pp. 575–576. doi: 10.1038/216575a0
  • H. Trinkaus, B. Singh, and C. Woo, Defect accumulation under cascade damage conditions, J. Nucl. Mater. 212 (1994), pp. 18–28. doi: 10.1016/0022-3115(94)90029-9
  • C. Woo and B. Singh, Production bias due to clustering of point defects in irradiation-induced cascades, Philos. Mag. A 65 (1992), pp. 889–912. doi: 10.1080/01418619208205596
  • T.D. De La Rubia and M. Guinan, New mechanism of defect production in metals: A molecular-dynamics study of interstitial-dislocation-loop formation in high-energy displacement cascades, Review Letters</DIFdel>Phys. Rev. Lett. 66 (1991), p. 2766–2769. doi: 10.1103/PhysRevLett.66.2766
  • N. Soneda and T.D. De La Rubia, Defect production, annealing kinetics and damage evolution in α-fe: An atomic-scale computer simulation, Philos. Mag. A 78 (1998), pp. 995–1019. doi: 10.1080/01418619808239970
  • A. Barashev, S. Golubov, and H. Trinkaus, Reaction kinetics of glissile interstitial clusters in a crystal containing voids and dislocations, Philos. Mag. A 81 (2001), pp. 2515–2532. doi: 10.1080/01418610108217161
  • E. Kuramoto, K. Ohsawa, J. Imai, K. Obata, and T. Tsutsumi, Bias mechanism and its effects for fundamental process of irradiation damage, Mater. Trans. 45 (2004), pp. 34–39. doi: 10.2320/matertrans.45.34
  • D.J. Bacon and T.D. de la Rubia, Molecular dynamics computer simulations of displacement cascades in metals, J. Nucl. Mater. 216 (1994), pp. 275–290. doi: 10.1016/0022-3115(94)90016-7
  • R. Becker and W. Döring, Kinetische behandlung der keimbildung in übersättigten dämpfen, Der Physik</DIFdel>Ann. Phys. 416 (1935), pp. 719–752. doi: 10.1002/andp.19354160806
  • A. Semenov and C. Woo, Classical nucleation theory of microstructure development under cascade-damage irradiation, J. Nucl. Mater. 323 (2003), pp. 192–204. doi: 10.1016/j.jnucmat.2003.08.004
  • M.P. Surh, J. Sturgeon, and W. Wolfer, Master equation and fokker–planck methods for void nucleation and growth in irradiation swelling, J. Nucl. Mater. 325 (2004), pp. 44–52. doi: 10.1016/j.jnucmat.2003.10.013
  • T. Jourdan, G. Bencteux, and G. Adjanor, Efficient simulation of kinetics of radiation induced defects: A cluster dynamics approach, J. Nucl. Mater. 444 (2014), pp. 298–313. doi: 10.1016/j.jnucmat.2013.10.009
  • Y.V. Konobeev, A. Subbotin, and S. Golubov, The theory of void and interstitial dislocation loop growth in irradiated metals, Radiat. Eff. 20 (1973), pp. 265–271. doi: 10.1080/00337577308232294
  • N. Ghoniem and G. Kulcinski, A rate theory approach to time dependent microstructural development during irradiation, Radiat. Eff. 39 (1978), pp. 47–56. doi: 10.1080/00337577808233246
  • N. Ghoniem and S. Sharafat, A numerical solution to the fokker-planck equation describing the evolution of the interstitial loop microstructure during irradiation, J. Nucl. Mater. 92 (1980), pp. 121–135. doi: 10.1016/0022-3115(80)90148-8
  • L. Mansur, Theory and experimental background on dimensional changes in irradiated alloys, J. Nucl. Mater. 216 (1994), pp. 97–123. doi: 10.1016/0022-3115(94)90009-4
  • C.J. Ortiz, P. Pichler, T. Fühner, F. Cristiano, B. Colombeau, N.E. Cowern, and A. Claverie, A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon, Applied Physics</DIFdel>J. Appl. Phys. 96 (2004), pp. 4866–4877. doi: 10.1063/1.1786678
  • A. Barbu and E. Clouet. Cluster dynamics modeling of materials: Advantages and limitations, in Solid State Phenomena, R. Abdank-Kozubski, G.E. Murch, and P. Zięba, eds., Vol. 129, Trans TechPublications Ltd, Switzerland, 2007.
  • C.J. Ortiz and M.J. Caturla, Cascade damage evolution: Rate theory versus kinetic monte carlo simulations, J. Comput. Aided Mater. Des. 14 (2007), pp. 171–181. Available at. doi: 10.1007/s10820-007-9082-9
  • R.E. Stoller, S.I. Golubov, C. Domain, and C. Becquart, Mean field rate theory and object kinetic monte carlo: A comparison of kinetic models, J. Nucl. Mater. 382 (2008), pp. 77–90. doi: 10.1016/j.jnucmat.2008.08.047
  • J. Marian and V.V. Bulatov, Stochastic cluster dynamics method for simulations of multispecies irradiation damage accumulation, J. Nucl. Mater. 415 (2011), pp. 84–95. doi: 10.1016/j.jnucmat.2011.05.045
  • A. Barashev, S. Golubov, and R. Stoller, Theoretical investigation of microstructure evolution and deformation of zirconium under neutron irradiation, J. Nucl. Mater. 461 (2015), pp. 85–94. doi: 10.1016/j.jnucmat.2015.02.001
  • P. Terrier, M. Athènes, T. Jourdan, G. Adjanor, and G. Stoltz, Cluster dynamics modelling of materials: A new hybrid deterministic/stochastic coupling approach, J. Comput. Phys. 350 (2017), pp. 280–295. doi: 10.1016/j.jcp.2017.08.015
  • M.V. Smoluchowski, Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen, Z. Phys. Chem. 92 (1918), pp. 129–168.
  • U. Gösele and W. Frank, Extension of the unsaturable trap model to one-dimensional interstitial migration, Phys. Status Solidi (b) 61 (1974), pp. 163–172. doi: 10.1002/pssb.2220610112
  • U. Gösele and F. Huntley, Two-dimensional bimolecular diffusion limited reaction kinetics, Phys. Lett. A 55 (1975), pp. 291–292. doi: 10.1016/0375-9601(75)90475-2
  • U. Gösele and A. Seeger, Theory of bimolecular reaction rates limited by anisotropic diffusion, Philos. Mag. 34 (1976), pp. 177–193. doi: 10.1080/14786437608221934
  • S. Hardt, Rates of diffusion controlled reactions in one, two and three dimensions, Chemistry</DIFdel>Biophys. Chem. 10 (1979), pp. 239–243. doi: 10.1016/0301-4622(79)85012-7
  • S.L. Dudarev, Inhomogeneous nucleation and growth of cavities in irradiated materials, Phys. Rev. B62 (2000), pp. 9325–9337. Available at. doi: 10.1103/PhysRevB.62.9325
  • D. Xu, B.D. Wirth, M. Li, and M.A. Kirk, Defect microstructural evolution in ion irradiated metallic nanofoils: Kinetic monte carlo simulation versus cluster dynamics modeling and in situ transmission electron microscopy experiments, Appl. Phys. Lett. 101 (2012), p. 101905.
  • A.A. Kohnert and B.D. Wirth, Cluster dynamics models of irradiation damage accumulation in ferritic iron. II. Effects of reaction dimensionality, J. Appl. Phys. 117 (2015), p. 154306. Available at https://doi.org/10.1063/1.4918316.
  • A.Y. Dunn, L. Capolungo, E. Martinez, and M. Cherkaoui, Spatially resolved stochastic cluster dynamics for radiation damage evolution in nanostructured metals, J. Nucl. Mater. 443 (2013), pp. 128–139. Available at http://www.sciencedirect.com/science/article/pii/S0022311513008878. doi: 10.1016/j.jnucmat.2013.07.009
  • A. Brailsford, R. Bullough, and M. Hayns, Point defect sink strengths and void-swelling, J. Nucl. Mater. 60 (1976), pp. 246–256. doi: 10.1016/0022-3115(76)90139-2
  • R. Bullough, M. Hayns, and M. Wood, Sink strengths for thin film surfaces and grain boundaries, J. Nucl. Mater. 90 (1980), pp. 44–59. doi: 10.1016/0022-3115(80)90244-5
  • A. Brailsford and R. Bullough, The theory of sink strengths, Phil. Trans. R. Soc. Lond. A 302 (1981), pp. 87–137. doi: 10.1098/rsta.1981.0158
  • V. Borodin, Rate theory for one-dimensional diffusion, Phys. A 260 (1998), pp. 467–478. Available at http://www.sciencedirect.com/science/article/pii/S0378437198003380. doi: 10.1016/S0378-4371(98)00338-0
  • M. Helmut, Diffusion in Solids; Fundamentals, Methods, Materials, Diffusioncontrolled Processes, Springer, Berlin/Heidelberg, 2007.
  • A. Mandelis, Diffusion-wave Fields: Mathematical Methods and Green Functions, Springer Science & Business Media, New York, 2013.
  • W. Wolfer, The dislocation bias, J. Comput. Aided Mater. Des. 14 (2007), pp. 403–417. doi: 10.1007/s10820-007-9051-3
  • A. Sivak, V. Chernov, V. Romanov, and P. Sivak, Kinetic monte-carlo simulation of self-point defect diffusion in dislocation elastic fields in BCC iron and vanadium, J. Nucl. Mater. 417 (2011), pp. 1067–1070. doi: 10.1016/j.jnucmat.2010.12.176
  • Z. Chang, P. Olsson, D. Terentyev, and N. Sandberg, Dislocation bias factors in FCC copper derived from atomistic calculations, J. Nucl. Mater. 441 (2013), pp. 357–363. doi: 10.1016/j.jnucmat.2013.06.029
  • H. Trinkaus, B. Singh, and S. Golubov, Progress in modelling the microstructural evolution in metals under cascade damage conditions, J. Nucl. Mater. 283 (2000), pp. 89–98. doi: 10.1016/S0022-3115(00)00332-9
  • T. Hudson, S. Dudarev, M.J. Caturla, and A. Sutton, Effects of elastic interactions on post-cascade radiation damage evolution in kinetic monte carlo simulations, Philos. Mag. 85 (2005), pp. 661–675. doi: 10.1080/14786430412331320026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.