448
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

twin nucleation at prismatic/basal boundary in hexagonal close-packed metals

, , , , &
Pages 2584-2603 | Received 19 Nov 2018, Accepted 14 Jun 2019, Published online: 03 Jul 2019

References

  • M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metal. Trans. A 12 (1981), pp. 409–418. doi: 10.1007/BF02648537
  • J.W. Christian and S. Mahajan, Deformation twinning, Prog. Mater. Sci. 39 (1995), pp. 1–157. doi: 10.1016/0079-6425(94)00007-7
  • Y.J. Li, Y.J. Chen, J.C. Walmsley, R.H. Mathinsen, S. Dumoulin, and H.J. Roven, Faceted interfacial structure of {101¯1} twins in Ti formed during equal channel angular pressing, Scripta Mater. 62 (2010), pp. 443–446. doi: 10.1016/j.scriptamat.2009.11.039
  • A. Moitra, Grain size effect on microstructural properties of 3D nanocrystalline magnesium under tensile deformation, Comput. Mater. Sci. 79 (2013), pp. 247–251. doi: 10.1016/j.commatsci.2013.05.051
  • F. Mompiou, M. Legros, C. Ensslen, and O. Kraft, In situ TEM study of twin boundary migration in sub-micron Be fibers, Acta Mater. 96 (2015), pp. 57–65. doi: 10.1016/j.actamat.2015.06.016
  • T. Tang, S. Kim and M.F. Horstemeyer, Fatigue crack growth in magnesium single crystals under cyclic loading: Molecular dynamics simulation, Comput. Mater. Sci. 48 (2010), pp. 426–439. doi: 10.1016/j.commatsci.2010.02.003
  • X.Z. Tang, Y.F. Guo, S. Xu, and Y.S. Wang, Atomistic study of pyramidal slips in pure magnesium single crystal under nano-compression, Phil. Mag. 95 (2015), pp. 2013–2025. doi: 10.1080/14786435.2015.1043970
  • S. Xu, L.S. Toth, C. Schuman, J.-S. Lecomte, and M.R. Barnett, Dislocation mediated variant selection for secondary twinning in compression of pure titanium, Acta Mater. 124 (2017), pp. 59–70. doi: 10.1016/j.actamat.2016.10.063
  • N. Thompson and D. Millard, Twin formation in cadmium, Phil. Mag. 43 (1952), pp. 422–440. doi: 10.1080/14786440408520175
  • B. Li and E. Ma, Atomic shuffling dominated mechanism for deformation twinning in magnesium, Phys. Rev. Lett. 103 (2009), p. 035503.
  • A. Ostapovets and P. Molnár, On the relationship between the shuffling-dominated and shear-dominated mechanisms for twinning in magnesium, Scripta Mater. 69 (2013), pp. 287–290. doi: 10.1016/j.scriptamat.2013.04.019
  • H.A. Khater, A. Serra, and R.C. Pond, Atomic shearing and shuffling accompanying the motion of twinning disconnections in zirconium, Phil. Mag. 93 (2013), pp. 1279–1298. doi: 10.1080/14786435.2013.769071
  • N. Combe, F. Mompiou, and M. Legros, Disconnections kinks and competing modes in shear-coupled grain boundary migration, Phys. Rev. B 93 (2016), pp. 024109. doi: 10.1103/PhysRevB.93.024109
  • J.P. Hirth, J. Wang, and C.N. Tomé, Disconnections and other defects associated with twin interfaces, Prog. Mater. Sci. 83 (2016), pp. 417–471. doi: 10.1016/j.pmatsci.2016.07.003
  • A. Ostapovets and R. Gröger, Twinning disconnections and basal-prismatic twin boundary in magnesium, Model. Simul. Mater. Sci. Eng. 22 (2014), pp. 25015–25024. doi: 10.1088/0965-0393/22/2/025015
  • A. Rajabzadeh, F. Mompiou, S. Lartigue-Korinek, N. Combe, M. Legros, and D.A. Molodov, The role of disconnections in deformation-coupled grain boundary migration, Acta Mater. 77 (2014), pp. 223–235. doi: 10.1016/j.actamat.2014.05.062
  • J. Wang, J.P. Hirth, and C.N. Tomé, (1¯012) Twinning nucleation mechanisms in hexagonal-close-packed crystals, Acta Mater. 57 (2009), pp. 5521–5530. doi: 10.1016/j.actamat.2009.07.047
  • J. Wang, R.G. Hoagland, J.P. Hirth, L. Capolungo, I.J. Beyerlein, and C.N. Tomé, Nucleation of a formula omitted twin in hexagonal close-packed crystals, Scripta Mater. 61 (2009), pp. 903–906. doi: 10.1016/j.scriptamat.2009.07.028
  • A. Serra, D.J. Bacon, and R.C. Pond, Comment on ‘atomic shuffling dominated mechanism for deformation twinning in magnesium’, Phys. Rev. Lett. 104 (2010), p. 029603, author reply, p. 029604. doi: 10.1103/PhysRevLett.104.029603
  • J.P. Hirth, Dislocations, steps and disconnections at interfaces, J. Phys. Chem. Solids 55 (1994), pp. 985–989. doi: 10.1016/0022-3697(94)90118-X
  • J.P. Hirth and R.C. Pond, Steps, dislocations and disconnections as interface defects relating to structure and phase transformations, Acta Mater., 44 (1996), pp. 4749–4763. doi: 10.1016/S1359-6454(96)00132-2
  • A. Serra, D.J. Bacon, and R.C. Pond, Dislocations in interfaces in the h.c.p. metals – I. Defects formed by absorption of crystal dislocations, Acta Mater. 47 (1999), pp. 1425–1439. doi: 10.1016/S1359-6454(99)00016-6
  • A. Serra, D.J. Bacon, and R.C. Pond, Dislocations in interfaces in the h.c.p metals – II. Mechanisms of defect mobility under stress, Acta Mater. 47 (1999), pp. 1441–1453. doi: 10.1016/S1359-6454(99)00016-6
  • H.A. Khater, A. Serra, R.C. Pond, and J.P. Hirth, The disconnection mechanism of coupled migration and shear at grain boundaries, Acta Mater. 60 (2012), pp. 2007–2020. doi: 10.1016/j.actamat.2012.01.001
  • J. Han, S.L. Thomas, and D.J. Srolovitz, Grain-boundary kinetics: A unified approach, Prog. Mater. Sci. 98 (2018), pp. 386–476. doi: 10.1016/j.pmatsci.2018.05.004
  • S. Lay and G. Nouet, HREM study of the (0112) twin interface in zinc, Phil. Mag. A 70 (1994), pp. 261–275. doi: 10.1080/01418619408243184
  • T. Braisaz, P. Ruterana, and G. Nouet, Twin tip defects related to the nucleation and growth mechanisms of the twin (1012) in zinc characterised by high-resolution electron microscopy, Phil. Mag. A 76 (1997), pp. 63–84. doi: 10.1080/01418619708209962
  • T. Braisaz, High-resolution electron microscopy study of the (1012) twin and defects analysis in deformed polycrystalline alpha titanium, Phil. Mag. Lett. 74 (1996), pp. 331–338. doi: 10.1080/095008396180056
  • X.Y. Zhang, Y.T. Zhu, and Q. Liu, Deformation twinning in polycrystalline Co during room temperature dynamic plastic deformation, Scripta Mater. 63 (2010), pp. 387. doi: 10.1016/j.scriptamat.2010.04.031
  • X.Y. Zhang, B. Li, X.L. Wu, Y.T. Zhu, Q. Ma, Q. Liu, P.T. Wang, and M.F. Horstemeyer, Twin boundaries showing very large deviations from the twinning plane, Scripta Mater. 67 (2012), pp. 862–865. doi: 10.1016/j.scriptamat.2012.08.012
  • J. Tu, X. Zhang, J. Wang, Q. Sun, Q. Liu, and C.N. Tomé, Structural characterization of {101¯2} twin boundaries in cobalt, Appl. Phys. Lett. 103 (2013), pp. 051903.
  • Q. Sun, X.Y. Zhang, Y. Ren, J. Tu, and Q. Liu, Interfacial structure of {101¯2} twin tip in deformed magnesium alloy, Scripta Mater. 41 (2014), pp. 90–91.
  • Q. Sun, X.Y. Zhang, J. Tu, Y. Ren, H. Qin, and Q. Liu, Characterization of basal-prismatic interface of twin in deformed titanium by high-resolution transmission electron microscopy, Phil. Mag. Lett. 95 (2015), pp. 145–151. doi: 10.1080/09500839.2015.1021399
  • J. Tu, X.Y. Zhang, Y. Ren, Q. Sun, and Q. Liu, Structural characterization of {101¯2} Loading irregular-shaped twinning boundary in hexagonal close-packed metals, Mater. Charact. 106 (2015), pp. 240–244. doi: 10.1016/j.matchar.2015.05.032
  • B.Y. Liu, J. Wang, B. Li, L. Lu, X.Y. Zhang, Z.W. Shan, J. Li, C.L. Jia, J. Sun, and E. Ma, Twinning-like lattice reorientation without a crystallographic twinning plane, Nature Commum. 5 (2014), pp. 3297. doi: 10.1038/ncomms4297
  • B.Y. Liu, L. Wan, J. Wang, E. Ma, and Z.W. Shan, Terrace-like morphology of the boundary created through basal-prismatic transformation in magnesium, Scripta Mater. 100 (2015), pp. 86–89. doi: 10.1016/j.scriptamat.2014.12.020
  • B. Xu, L. Capolungo, and D. Rodney, On the importance of prismatic/basal interfaces in the growth of twins in hexagonal close packed crystals, Scripta Mater. 68 (2013), pp. 901–904. doi: 10.1016/j.scriptamat.2013.02.023
  • C.D. Barrett and H. El Kadiri, The roles of grain boundary dislocations and disclinations in the nucleation of {101¯2} twinning, Acta Mater. 63 (2014), pp. 1–15. doi: 10.1016/j.actamat.2013.09.012
  • H. Zong, X. Ding, T. Lookman, J. Li, and J. Sun, Uniaxial stress-driven coupled grain boundary motion in hexagonal close-packed metals: A molecular dynamics study, Acta Mater. 82 (2015), pp. 295–303. doi: 10.1016/j.actamat.2014.09.010
  • Y.R. Paudel, C.D. Barrett, M. Tschopp, K. Inal, and H.E. Kadiri, Beyond initial twin nucleation in hcp metals: Micromechanical formulation for determining twin spacing during deformation, Acta Mater. 133 (2017), pp. 134–146. doi: 10.1016/j.actamat.2017.05.013
  • M. Wu, J. Gu, and Z. Jin, Migration energy barriers of symmetric tilt grain boundaries in body-centered cubic metal Fe, Scripta Mater. 107 (2015), pp. 75–78. doi: 10.1016/j.scriptamat.2015.05.024
  • R.A. Lebensohn and C.N. Tom, A study of the stress state associated with twin nucleation and propagation in anisotropic materials[J], Phil. Mag. A 67(1) (1993), pp. 187–206. doi: 10.1080/01418619308207151
  • S. Tang, G. Zhang, N. Zhou, T.F. Guo, and X.X. Huang, Uniaxial stress-driven grain boundary migration in hexagonal close-packed (HCP) metals: Theory and MD simulations, Int. J. Plast. 95 (2017), pp. 82–104. doi: 10.1016/j.ijplas.2017.04.001
  • R. Zope and Y. Mishin, Interatomic potentials for atomistic simulations of the Ti-Al system, Phys. Rev. B 68 (2003), pp. 366–369. doi: 10.1103/PhysRevB.68.024102
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Chem. Phys. 117 (1995), pp. 1–19.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO – The open visualization tool, Model. Simul. Mater. Sci. Eng. 18 (2010), pp. 2154–2162.
  • A. Ostapovets and A. Serra, Characterization of the matrix-twin interface of a (10–12) twin during growth, Phil. Mag. 94 (2014), pp. 2827–2839. doi: 10.1080/14786435.2014.933906
  • J.M. Howe, R.C. Pond, and J.P. Hirth, The role of disconnections in phase transformations, Prog. Mater. Sci. 54 (2009), pp. 792–838. doi: 10.1016/j.pmatsci.2009.04.001
  • A.P. Thompson, S.J. Plimpton, and W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions., J. Chem. Phys. 131 (2009), pp. 154107. doi: 10.1063/1.3245303
  • M. Fukuhara and A. Sanpei, Elastic moduli and internal frictions of Inconel 718 and Ti-6Al-4V as a function of temperature, J. Mater. Sci. Lett. 12 (1993), pp. 1122–1124. doi: 10.1007/BF00420541
  • N. Sridhar, J.M. Rickman, and D.J. Srolovitz, Microstructural stability of stressed lamellar and fiber composites, Acta Mater. 45 (1997), pp. 2715–2733. doi: 10.1016/S1359-6454(96)00413-2
  • P.H. Leo and R.F. Sekerka, The effect of surface stress on crystal-melt and crystal-crystal equilibrium, Acta Metall. 37 (1989), pp. 3119–3138. doi: 10.1016/0001-6160(89)90184-3
  • D.L. Mcdowell, Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium, Phil. Mag. 87 (2007), pp. 3147–3173. doi: 10.1080/14786430701255895
  • S.M. Foiles, Temperature dependence of grain boundary free energy and elastic constants, Scripta Mater. 62 (2010), pp. 231–234. doi: 10.1016/j.scriptamat.2009.11.003
  • W.F. Hosford and T.J. Allen, Twinning and directional slip as a cause for a strength differential effect, Metal. Mater. Trans. B 4 (1973), pp. 1424–1425.
  • M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The onset of twinning in metals: A constitutive description, Acta Mater. 49 (2001), pp. 4025–4039. doi: 10.1016/S1359-6454(01)00300-7
  • S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu, Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation, Acta Mater. 55 (2007), pp. 6843–6851. doi: 10.1016/j.actamat.2007.08.042
  • W. Wen, L. Capolungo, and C.N. Tomé, Mechanism-based modeling of solute strengthening: Application to thermal creep in Zr alloy, Int. J. Plast. 106 (2018), pp. 88–106. doi: 10.1016/j.ijplas.2018.03.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.