276
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Bi-fluctuation in Na0.5Bi0.5TiO3 ferroelectric ceramics with abnormal relaxor behaviour

, , , , , , , & show all
Pages 2661-2680 | Received 14 May 2018, Accepted 12 Jun 2019, Published online: 04 Jul 2019

References

  • G.A. Smolensky, V.A. Isupov, A.I. Agranovskaya and N.N. Krainik, New ferroelectrics of complex composition. IV. Sov. Phys.-Solid State. 2 (1961), pp. 2651–2654.
  • I.G. Siny, T.A. Smirnova and T.V. Kruzina, The phase transition dynamics in Na1/2Bi1/2TiO3. Ferroelectrics. 124 (1991), pp. 207–212. doi: 10.1080/00150199108209439
  • J. Suchanicz and J. Kwapulinski, X-ray diffraction study of the phase transitions in Na0.5Bi0.5TiO3. Ferroelectrics. 165 (1995), pp. 249–253. doi: 10.1080/00150199508228304
  • V. Dorcet, G. Trolliard and P. Boullay, Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhombohedral to orthorhombic phase transition. Chem. Mater. 20 (2008), pp. 5061–5073. doi: 10.1021/cm8004634
  • T. Gilles and V. Dorcet, Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part II: Second order orthorhombic to tetragonal phase transition. Chem. Mater. 20 (2008), pp. 5074–5082. doi: 10.1021/cm800464d
  • S.B. Vakhrushev, V.A. Isupov, B.E. Kvyatkovsky, N.M. Okuneva, I.P. Pronin, G.A. Smolensky and P.P. Syrnikov, Phase transitions and soft modes in sodium bismuth titanate. Ferroelectrics. 63 (1985), pp. 153–160. doi: 10.1080/00150198508221396
  • V. Dorcet, G. Trolliard and P. Boullay, The structural origin of the antiferroelectric properties and relaxor behavior of Na0.5Bi0.5TiO3. J. Magn. Magn. Mater. 321 (2009), pp. 1758–1761. doi: 10.1016/j.jmmm.2009.02.013
  • J.K. Lee, K.S. Hong, C.K. Kim and S.E. Park, Phase transitions and dielectric properties in A-site ion substituted (Na1/2Bi1/2)TiO3 ceramics (A = Pb and Sr). J. Appl. Phys. 91 (2002), pp. 4538–4542. doi: 10.1063/1.1435415
  • J. Suchanicz and J. Kwapulinski, X-ray diffraction study of the phase transitions in Na0.5Bi0.5TiO3. Ferroelectrics. 165 (1995), pp. 249–253. doi: 10.1080/00150199508228304
  • B.N. Rao, R. Datta, S.S. Chandrashekaran, D.K. Mishra, V. Sathe, A. Senyshyn, and R. Ranjan, Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3. Phys. Rev. B. 88 (2013), pp. 224103-1–224103-15. doi: 10.1103/PhysRevB.88.224103
  • I. Levin and I.M. Reaney, Nano-and mesoscale structure of Na1/2Bi1/2TiO3: A TEM Perspective. Adv. Funct. Mater. 22 (2012), pp. 3445–3452. doi: 10.1002/adfm.201200282
  • S. Gorfman and P.A. Thomas, Evidence for a non-rhombohedral average structure in the lead-free piezoelectric material Na0.5Bi0.5TiO3. J. Appl. Crystallogr. 43 (2010), pp. 1409–1414. doi: 10.1107/S002188981003342X
  • F. Zhou, Y. Xu, D. Li, C. He, M. Gao and T. Wang, (Na0.5Bi0.5)TiO3: Synthesis and X-ray powder diffraction data. Powder Diffr. 4 (1989), pp. 223–224. doi: 10.1017/S0885715600013786
  • B.N. Rao, A.N. Fitch, and R. Ranjan, Ferroelectric-ferroelectric phase coexistence in Na1/2Bi1/2TiO3. Phys. Rev. B. 87 (2013), pp. 060102-1–060102-5. doi: 10.1103/PhysRevB.87.060102
  • V. Dorcet and G. Trolliard, A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3, Acta Mater. 56 (2008) pp. 1753 − 1761. doi: 10.1016/j.actamat.2007.12.027
  • R. Beanland and P.A. Thomas, Imaging planar tetragonal sheets in rhombohedral Na0.5Bi0.5TiO3 using transmission electron microscopy. Scripta Mater. 65 (2011), pp. 440–443. doi: 10.1016/j.scriptamat.2011.05.031
  • R. Beanland and P.A. Thomas, Symmetry and defects in rhombohedral single-crystalline Na0.5Bi0.5TiO3. Phys. Rev. B. 89 (2014), pp. 174102-1–174102-8. doi: 10.1103/PhysRevB.89.174102
  • W. Ge, C.P. Devreugd, D. Phelan, Q. Zhang, M. Ahart, J. Li, H. Luo, L.A. Boatner, D. Viehland, and P.M. Gehring, Lead-free and lead-based ABO3 perovskite relaxors with mixed-valence A-site and B-site disorder: Comparative neutron scattering structural study of (Na1/2Bi1/2)TiO3 and Pb(Mg1/3Nb2/3)O3. Phys. Rev. B. 88 (2013), pp. 174115-1–174115-19.
  • G. Xu, Z. Zhong, Y. Bing, Z. Ye, C. Stock, and G. Shirane, Ground state of the relaxor ferroelectric Pb(Zn1/3Nb2/3)O3. Phys. Rev. B. 67 (2003), pp. 104102-1–104102-5.
  • Y. Yan, S.J. Pennycook, Z. Xu, and D. Viehland, Determination of the ordered structures of Pb(Mg1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3 by atomic-resolution Z-contrast imaging, Appl. Phys. Lett. 72 (1998), pp. 3145–3147. doi: 10.1063/1.121574
  • C.A. Randall, D.J. Barber, R.W. Whatmore and P. Groves, A TEM study of ordering in the perovskite, Pb(Sc1/2Ta1/2)O3. J. Mater. Sci. 21 (1986), pp. 4456–4462. doi: 10.1007/BF01106571
  • G. King and P.M. Woodward, Cation ordering in perovskites. J. Mater. Chem. 20 (2010), pp. 5785–5796. doi: 10.1039/b926757c
  • S.B. Vakhrushev, B.E. Kvyatkovskii, R.S. Malysheva, N.M. Okuneva and P.P. Syrnikov, Investigation of a broad phase transition in Na0.5Bi0.5TiO3 by the neutron scattering method. Soviet Phys.-Solid State (Engl. Transl.). 27 (1985), pp. 455–457.
  • C.G.F. Stenger and A.J. Burggra, Order–disorder reactions in the ferroelectric perovskites Pb(Sc1/2Nb1/2)O3 and Pb(Sc1/2Ta1/2)O3. I. Kinetics of the ordering process. Phys. Stat. Sol. (a). 61 (1980), pp. 275–285. doi: 10.1002/pssa.2210610132
  • J. Kreisel, P. Bouvier, B. Dkhil, P.A. Thomas, A.M. Glazer, T.R. Welberry, B. Chaabane, and M. Mezouar, High-pressure x-ray scattering of oxides with a nanoscale local structure: Application to Na1/2Bi1/2TiO3. Phys. Rev. B. 68 (2003), pp. 014113-1–014113-7. doi: 10.1103/PhysRevB.68.014113
  • S.E. Park, S.J. Chung, I.T. Kim and K.S. Hong, Nonstoichiometry and the long-range cation ordering in crystals of (Na1/2Bi1/2)TiO3. J. Am. Ceram. Soc. 77 (1994), pp. 2641–2647. doi: 10.1111/j.1151-2916.1994.tb04655.x
  • J. Petzelt, S. Kamba, J. Fábry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, and R. Klein, Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3. J. Phys.: Condens. Matter. 16 (2004), pp. 2719–2731.
  • L.E. Cross, Relaxor ferroelectrics. Ferroelectrics. 76 (1987), pp. 241–267. doi: 10.1080/00150198708016945
  • J. Kreisel, A.M. Glazer, P. Bouvier, and G. Lucazeau, High-pressure Raman study of a relaxor ferroelectric: The Na0.5Bi0.5TiO3 perovskite. Phys. Rev. B. 63 (2001), pp. 174106-1–174106-10. doi: 10.1103/PhysRevB.63.174106
  • J. Kreisel, A.M. Glazer, G. Jones, P.A. Thomas, L. Abello, and G. Lucazeau, An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: The (Na1-xKx)0.5Bi0.5TiO3 (0≤x≤1) solid solution. J. Phys.: Condens. Matter 12 (2000), pp. 3267–3280.
  • M. Gröting, S. Hayn and K. Albe, Chemical order and local structure of the lead-free relaxor ferroelectric Na1/2Bi1/2TiO3. J. Solid State Chem. 184 (2011), pp. 2041–2046. doi: 10.1016/j.jssc.2011.05.044
  • J. Xu, H. Ke, D. Jia, W. Wang and Y. Zhou, Low-temperature synthesis of BiFeO3 nanopowders via a sol–gel method. J. Alloys Compd. 472 (2009), pp. 473–477. doi: 10.1016/j.jallcom.2008.04.090
  • H. Zhang, H. Ke, W. Wang, D. Jia and Y. Zhou, Crystallization behavior and multiferroic properties of Bi3.15Nd0.85Ti3O12/CoFe2O4 powders synthesized by sol–gel method. J. Am. Ceram. Soc. 99 (2016), pp. 2334–2340. doi: 10.1111/jace.14228
  • P.A. Thomas, J. Kreisel, A.M. Glazer, P. Bouvier, Q. Jiang and R. Smith, The high-pressure structural phase transitions of sodium bismuth titanate. Z. Kristallogr. 220 (2005), pp. 717–725.
  • R.O. Simmons and R.W. Balluppi, Measurements of equilibrium vacancy concentrations in aluminum. Phys. Rev. 117 (1960), pp. 52–61. doi: 10.1103/PhysRev.117.52
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100 (2008), pp. 136406-1–136406-4. doi: 10.1103/PhysRevLett.100.136406
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 14 (2002), pp. 2717–2744.
  • G.E. Eperon, et al., Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science. 354 (2016), pp. 861–865. doi: 10.1126/science.aaf9717
  • G.O. Jones and P.A. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Cryst. B. 58 (2002), pp. 168–178. doi: 10.1107/S0108768101020845
  • M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, and U.V. Waghmare, Theoretical and experimental investigation of Raman modes, ferroelectric and dielectric properties of relaxor Na0.5Bi0.5TiO3. J. Appl. Phys. 113 (2013), pp. 194106-1–194106-7. doi: 10.1063/1.4804940
  • B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, and D.K. Pradhan, Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3. J. Phys. D: Appl. Phys. 44 (2011), pp. 355402-1–355402-10. doi: 10.1088/0022-3727/44/35/355402
  • O.A. Yassin, S.N. Alamri, and A.A. Joraid, Effect of particle size and laser power on the Raman spectra of CuAlO2 delafossite nanoparticles. J. Phys. D: Appl. Phys. 46 (2013), pp. 235301-1–235301-7. doi: 10.1088/0022-3727/46/23/235301
  • P. Scherrer, Estimation of the size and internal structure of colloidal particles by means of röntgen, Nachr. Ges. Wiss. Göttingen. 2 (1918), pp. 96–100.
  • H. Zhang, H. Ke, L. Zhang, W. Wang, D. Jia and Y. Zhou, Effect of magnetic CoFe2O4 component on sintering densification process of Bi3.15Nd0.85Ti3O12 ceramics. J. Eur. Ceram. Soc. 37 (2017), pp. 2115–2122. doi: 10.1016/j.jeurceramsoc.2016.12.027
  • S.K. Padhi, S.N. Gottapu and M.G. Krishna, Electron-beam irradiation induced transformation of Cu2(OH)3NO3 nanoflakes into nanocrystalline CuO. Nanoscale. 8 (2016), pp. 11194–11201. doi: 10.1039/C6NR02572B
  • B.H. Liu, H.W. Teo, Z.H. Mo, Z.H. Mai, J. Lam, J.M. Xue, Y.Z. Zhao, and P.K. Tan, In situ TEM study of electron-beam radiation induced boron diffusion and effects on phase and microstructure evolution in nanostructured CoFeB/SiO2 thin film. J. Appl. Phys. 121 (2017), pp. 015111-1–015111-11.
  • T.M. Smeeton, M.J. Kappers, J.S. Barnard, M.E. Vickers and C.J. Humphreys, Electron-beam-induced strain within InGaN quantum wells: False indium “cluster” detection in the transmission electron microscope. Appl. Phys. Lett. 83 (2003), pp. 5419–5421. doi: 10.1063/1.1636534
  • Z. Chen, X. Wang, S.P. Ringer, and X. Liao, Manipulation of nanoscale domain switching using an electron beam with omnidirectional electric field distribution. Phys. Rev. Lett. 117 (2016), pp. 027601-1–027601-5.
  • R.J. Nemanich, S.A. Solin, and M.R. Martin, Light scattering study of boron nitride microcrystals. Phys. Rev. B. 23 (1981), pp. 6348–6356. doi: 10.1103/PhysRevB.23.6348
  • A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61 (2000), pp. 14095–14107. doi: 10.1103/PhysRevB.61.14095

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.