1,668
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

On the glide of [100] dislocation and the origin of ‘pencil glide’ in Mg2SiO4 olivine

, ORCID Icon & ORCID Icon
Pages 2751-2769 | Received 05 Apr 2019, Accepted 20 Jun 2019, Published online: 09 Jul 2019

References

  • G.I. Taylor and C.F. Elam, The distortion of iron crystals. Proc. R. Soc. A: Math. Phys. Eng. Sci. 112 (1926), pp. 337–361. doi: 10.1098/rspa.1926.0116
  • A.H.W. Ngan, A generalized Peierls-Nabarro model for nonplanar screw dislocation cores. J. Mech. Phys. Solids 45 (1997), pp. 903–921. doi: 10.1016/S0022-5096(96)00125-1
  • A.H.W. Ngan, A new model for dislocation kink-pair activation at low temperatures based on the Peierls-Nabarro concept. Philos. Mag. A 79 (1999), pp. 1697–1720. doi: 10.1080/01418619908210387
  • C.B. Raleigh, Mechanisms of plastic deformation of olivine. J. Geophys. Res. 73 (1968), pp. 5391–5406. doi: 10.1029/JB073i016p05391
  • D.L. Kohlstedt, C. Goetze, W.B. Durham and J.V. Sande, New technique for decorating dislocations in olivine. Science 191 (1976), pp. 1045–1046. doi: 10.1126/science.191.4231.1045
  • Y. Gueguen, Dislocations in naturally deformed terrestrial olivine: classification, interpretation, applications. Bull. Mineral 102 (1979), pp. 178–183.
  • W.B. Durham and C. Goetze, Plastic flow of oriented single crystals of olivine: 1. mechanical data. J. Geophys. Res. 82 (1977), pp. 5737–5753. doi: 10.1029/JB082i036p05737
  • B. Evans and C. Goetze, The temperature variation of hardness of olivine and its implication for polycrystalline yield stress. J. Geophys. Res. 84 (1979), pp. 5505–5524. doi: 10.1029/JB084iB10p05505
  • M. Darot and Y. Gueguen, High-temperature creep of forsterite single crystals. J. Geophys. Res.: Solid Earth 86 (1981), pp. 6219–6234. doi: 10.1029/JB086iB07p06219
  • R.J. Gaboriaud, M. Darot, Y. Gueguen and J. Woirgard, Dislocations in olivine indented at low temperatures. Phys. Chem. Miner. 7 (1981), pp. 100–104. doi: 10.1007/BF00309460
  • S.J. Mackwell, D.L. Kohlstedt and M.S. Paterson, The role of water in the deformation of olivine single crystals. J. Geophys. Res.: Solid Earth 90 (1985), pp. 11319–11333. doi: 10.1029/JB090iB13p11319
  • Y. Wang, R.C. Liebermann and J.N. Boland, Olivine as an in situ piezometer in high pressure apparatus. Phys. Chem. Miner. 15 (1988), pp. 493–497. doi: 10.1007/BF00311130
  • M. Panning and B. Romanowicz, Inferences on flow at the base of Earth's mantle based on seismic anisotropy. Science 303 (2004), pp. 351–353. doi: 10.1126/science.1091524
  • J. Durinck, P. Carrez and P. Cordier, Application of the Peierls-Nabarro model to dislocations in forsterite. Eur. J. Mineral. 19 (2007), pp. 631–639. doi: 10.1127/0935-1221/2007/0019-1757
  • P. Carrez, A. Walker, A. Metsue and P. Cordier, Evidence from numerical modelling for 3D spreading of [001] screw dislocations in Mg2SiO4 forsterite. Philos. Mag. 88 (2008), pp. 2477–2485. doi: 10.1080/14786430802363804
  • D. Mainprice, A. Tommasi, H. Couvy, P. Cordier and D.J. Frost, Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle. Nature 433 (2005), pp. 731–733. doi: 10.1038/nature03266
  • H. Jung, I. Katayama, Z. Jiang, T. Hiraga and S. Karato, Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 421 (2006), pp. 1–22. doi: 10.1016/j.tecto.2006.02.011
  • V. Bulatov and W. Cai (eds.), Computer Simulations of Dislocations, Oxford University Press, Oxford, 2006.
  • C.R.A. Catlow, Point defect and electronic properties of uranium dioxide. Proc. R. Soc. Lond. A 353 (1977), pp. 533–561. doi: 10.1098/rspa.1977.0049
  • G.V. Lewis and C.R.A. Catlow, Potential models for ionic oxides. J. Phys. C: Solid State Phys 18 (1985), pp. 1149–1161. doi: 10.1088/0022-3719/18/6/010
  • G.D. Price, S.C. Parker and M. Leslie, The lattice dynamics of forsterite. Mineral. Mag. 51 (1987), pp. 157–170. doi: 10.1180/minmag.1987.051.359.18
  • M.J. Sanders, M. Leslie and C.R.A. Catlow, Interatomic potentials for SiO2,. J. Chem. Soc., Chem. Commun 0 (1984), pp. 1271–1273. doi: 10.1039/c39840001271
  • B.G. Dick and A.W. Overhauser, Theory of the dielectric constants of alkali halide crystals. Phys. Rev. 112 (1958), pp. 90–103. doi: 10.1103/PhysRev.112.90
  • C.R.A. Catlow and G.D. Price, Computer modelling of solid-state inorganic materials. Nature 347 (1990), pp. 243–248. doi: 10.1038/347243a0
  • N.C. Richmond and J.P. Brodholt, Incorporation of Fe3+ into forsterite and wadsleyite. Am. Mineral. 85 (2000), pp. 1155–1158. doi: 10.2138/am-2000-8-905
  • A.M. Walker, J.D. Gale, B. Slater and K. Wright, Atomic scale modelling of the cores of dislocations in complex materials part 2: applications. Phys. Chem. Chem. Phys 7 (2005), pp. 3235–3242. doi: 10.1039/b505716g
  • S. Mahendran, P. Carrez, S. Groh and P. Cordier, Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential. Modell. Simul. Mater. Sci. Eng. 25 (2017), pp. 054002. doi: 10.1088/1361-651X/aa6efa
  • R. Skelton and A.M. Walker, Lubrication of dislocation glide in forsterite by Mg vacancies: Insights from Peierls-Nabarro modeling. Phys. Earth Planet. Inter. 287 (2019), pp. 1–9. doi: 10.1016/j.pepi.2018.12.004
  • G.D. Price, S.C. Parker and M. Leslie, The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs. Phys. Chem. Miner. 15 (1987), pp. 181–190. doi: 10.1007/BF00308782
  • B. Reynard, G.D. Price and P. Gillet, Thermodynamic and anharmonic properties of forsterite, a-Mg2SiO4: computer modelling versus high-pressure and high-temperature Measurements. J. Geophys. Res.: Solid Earth 97 (1992), pp. 19791–19801. doi: 10.1029/92JB01554
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • G. Henkelman, B.P. Uberuaga and H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113 (2000), pp. 9901–9904. doi: 10.1063/1.1329672
  • P.J. Mitchell and D. Fincham, Shell model simulations by adiabatic dynamics. J. Phys.: Condens. Matter 5 (1993), pp. 1031–1038.
  • N.H. de Leeuw and S.C. Parker, Molecular-dynamics simulation of MgO surfaces in liquid water using a shell-model potential for water. Phys. Rev. B 58 (1998), pp. 13901–13908. doi: 10.1103/PhysRevB.58.13901
  • X. Sun, Y. Chu, T. Song, Z. Liu, L. Zhang, X. Wang, Y. Liu and Q. Chen, Application of a shell model in molecular dynamics simulation to ZnO with zinc-blende cubic structure. Solid State Commun. 142 (2007), pp. 15–19. doi: 10.1016/j.ssc.2007.01.035
  • Y. Zhang, J. Hong, B. Liu and D. Fang, Molecular dynamics investigations on the size-dependent ferroelectric behavior of BaTiO3 nanowires. Nanotechnology 20 (2009), pp. 405703. doi: 10.1088/0957-4484/20/40/405703
  • W. Cai, Modeling dislocations using a periodic cell, in Handbook of Materials Modeling, Springer, Dordrecht, 2005. pp. 813–826.
  • N. Lehto and S. Öberg, Effects of dislocation interactions: application to the period-doubled core of the 90° partial in silicon. Phys. Rev. Lett 80 (1998), pp. 5568–5571. doi: 10.1103/PhysRevLett.80.5568
  • S. Ismail-Beigi and T.A. Arias, Ab initio study of screw dislocations in Mo and Ta: a new picture of plasticity in bcc transition metals. Phys. Rev. Lett 84 (2000), pp. 1499–1502. doi: 10.1103/PhysRevLett.84.1499
  • P. Hirel, A. Kraych, P. Carrez and P. Cordier, Atomic core structure and mobility of [100](010) and [010](100) dislocations in MgSiO3 perovskite. Acta Mater. 79 (2014), pp. 117–125. doi: 10.1016/j.actamat.2014.07.001
  • P. Carrez, J. Godet and P. Cordier, Atomistic simulations of 1⁄2 < 110 > screw dislocation core in magnesium oxide. Comput. Mater. Sci. 103 (2015), pp. 250–255. doi: 10.1016/j.commatsci.2014.10.019
  • J. Durinck, A. Legris and P. Cordier, Pressure sensitivity of olivine slip systems: first-principle calculations of generalised stacking faults. Phys. Chem. Miner. 32 (2005), pp. 646–654. doi: 10.1007/s00269-005-0041-2
  • P. Phakey, G. Dollinger, and J. Christie, Transmission electron microscopy of experimentally deformed olivine crystals, in Flow and Fracture of Rocks, Vol. 16, American Geophysical Union Monograph Series, Washington, D. C., 1972, pp. 117–138.
  • D.L. Kohlstedt and C. Goetze, Low-stress, high- temperature creep in olivine single crystals. J. Geophys. Res. 79 (1974), pp. 2045–2051. doi: 10.1029/JB079i014p02045
  • N. Chaari, E. Clouet and D. Rodney, First-principles study of secondary slip in zirconium. Phys. Rev. Lett 112 (2014), pp. 075504. doi: 10.1103/PhysRevLett.112.075504
  • P. Raterron, J. Chen, L. Li and P. Cordier, Pressure-induced slip-system transition in forsterite: single-crystal rheological properties at mantle pressure and temperature. Am. Mineral. 92 (2007), pp. 1436–1445. doi: 10.2138/am.2007.2474
  • L. Li, D. Weidner, P. Raterron, J. Chen, M. Vaughan, S. Mei and B. Durham, Deformation of olivine at mantle pressure using the D-DIA. Eur. J. Mineral. 18 (2006), pp. 7–19. doi: 10.1127/0935-1221/2006/0018-0007