289
Views
2
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Synthesis and characterization of graphene nanoplatelet-La0.7Ca0.3MnO3 composites

, ORCID Icon, , , &
Pages 2736-2750 | Received 03 Dec 2018, Accepted 19 Jun 2019, Published online: 10 Jul 2019

References

  • J.G. Bednorz and K.A. Müller, Possible high TC superconductivity in the Ba−La−Cu−O system. Zeitschrift für Phys. B Condens. Matter 64 (1986), pp. 189–193. doi: 10.1007/BF01303701
  • M.B. Salamon and M. Jaime, The physics of manganites: structure and transport. Rev. Mod. Phys 73 (2001), pp. 583–628. doi: 10.1103/RevModPhys.73.583
  • M.E. Amano, I. Betancourt, J.L. Sánchez Llamazares, L. Huerta, and C.F. Sánchez-Valdés, Mixed-valence La0.80(Ag1−xSrx)0.20MnO3 manganites with magnetocaloric effect. J. Mater. Sci 49 (2014), pp. 633–641. doi: 10.1007/s10853-013-7743-5
  • M. Balli, B. Roberge, J. Vermette, S. Jandl, P. Fournier, and M.M. Gospodinov, Magnetocaloric properties of the hexagonal HoMnO3 single crystal revisited. Physica. B. Condens. Matter. 478 (2015), pp. 77–83. doi: 10.1016/j.physb.2015.08.063
  • A. Asamitsu, Y. Moritomo, Y. Tomioka, T. Arima, and Y. Tokura, A structural phase transition induced by an external magnetic field. Nature 373 (1995), pp. 407–409. doi: 10.1038/373407a0
  • M.E. Amano, I. Betancourt, M.J. Arellano-Jimenez, J.L. Sánchez-Llamazares and C.F. Sánchez-Valdés, Magnetocaloric response of submicron (LaAg)MnO3 manganite obtained by Pechini method. J. Sol-Gel Sci. Techn 78 (2016), pp. 159–165. doi: 10.1007/s10971-015-3911-1
  • H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, and B. Batlogg, Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett 75 (1995), pp. 914–917. doi: 10.1103/PhysRevLett.75.914
  • A. Maignan, C. Martin, F. Damay, and B. Raveau, Factors Governing the magnetoresistance properties of the electron-doped manganites Ca1-xAxMnO3 (A = Ln, Th). Chem. Mater 10 (1998), pp. 950–954. doi: 10.1021/cm970781b
  • M.-H. Phan and S.-C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater 308 (2007), pp. 325–340. doi: 10.1016/j.jmmm.2006.07.025
  • P. Schiffer, A.P. Ramirez, W. Bao, and S.W. Cheong, Low temperature magnetoresistance and the magnetic phase diagram of La1−xCaxMnO3. Phys. Rev. Lett 75 (1995), pp. 3336–3339. doi: 10.1103/PhysRevLett.75.3336
  • Z.B. Guo, Y.W. Du, J.S. Zhu, H. Huang, W.P. Ding, and D. Feng, Large magnetic entropy change in perovskite-type manganese oxides. Phys. Rev. Lett 78 (1997), pp. 1142–1145. doi: 10.1103/PhysRevLett.78.1142
  • Z.C. Xia, S.L. Yuan, W. Feng, L.J. Zhang, G.H. Zhang, J. Tang, L. Liu, D.W. Liu, Q.H. Zheng, L. Chen, Z.H. Fang, S. Liu, and C.Q. Tang, Magnetoresistance and transport properties of different impurity doped La0.67Ca0.33MnO3 composite. Solid State Commun. 127 (2003), pp. 567–572. doi: 10.1016/S0038-1098(03)00506-4
  • R. M’nassri and A. Cheikhrouhou, Magnetocaloric effect in different impurity doped La0.67Ca0.33MnO3 composite. J. Supercond. Nov. Magn 27 (2014), pp. 421–425. doi: 10.1007/s10948-013-2278-1
  • P. Weiss and A. Piccard, Le phénomène magnétocalorique. J. Phys. Theor. Appl 7 (1917), pp. 103–109. doi: 10.1051/jphystap:019170070010300
  • A. Tekgul, O. Cakir, M. Acet, M. Farle, and N. Unal, The structural, magnetic, and magnetocaloric properties of In-doped Mn2−xCrxSb. J. Appl. Phys 118 (2015), pp. 153903. doi: 10.1063/1.4934253
  • A. Planes, L. Manosa, and M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter 21 (2009), pp. 233201. doi: 10.1088/0953-8984/21/23/233201
  • R. Caballero-Flores, V. Franco, A. Conde, K.E. Knipling, and M.A. Willard, Influence of Co and Ni addition on the magnetocaloric effect in Fe88−2xCoxNixZr7B4Cu1 soft magnetic amorphous alloys. Appl. Phys. Lett 96 (2010), pp. 182506. doi: 10.1063/1.3427439
  • I. Kucuk, K. Sarlar, A. Adam, and E. Civan, Magnetocaloric and magnetoresistance properties in Co-based (Co0.402Fe0.201Ni0.067B0.227Si0.053Nb0.05)100−xCux(x = 0–1) glassy alloys. Philos. Mag 96 (2016), pp. 3120–3130. doi: 10.1080/14786435.2016.1227485
  • A. Tekgül, K. Şarlar, and İ Küçük, Changes in structural, magnetic and magnetocaloric properties due to homogenization annealing in Ni54Mn19Ga27. J. Magn. Magn. Mater 469 (2019), pp. 183–188. doi: 10.1016/j.jmmm.2018.08.056
  • J. Du, Q. Zheng, Y.B. Li, Q. Zhang, D. Li, and Z.D. Zhang, Large magnetocaloric effect and enhanced magnetic refrigeration in ternary Gd-based bulk metallic glasses. J. Appl. Phys 103 (2008), pp. 023918. doi: 10.1063/1.2836956
  • C.G. Ünlü, Y.E. Tanış, M.B. Kaynar, T. Şimşek, and Ş Özcan, Magnetocaloric effect in La0.7NdxBa(0.3-x)MnO3 (x = 0, 0.05, 0.1) perovskite manganites. J. Alloy. Compd 704 (2017), pp. 58–63. doi: 10.1016/j.jallcom.2017.02.030
  • P. Cataldi, A. Athanassiou, and I. Bayer, Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci 8 (2018), pp. 1438. doi: 10.3390/app8091438
  • D.D. La, T.A. Nguyen, L.A. Jones, and S.V. Bhosale, Graphene-supported spinel CuFe2O4 composites: Novel Adsorbents for Arsenic Removal in Aqueous Media. Sensors 17 (2017), pp. 1292. doi: 10.3390/s17061292
  • A. Nieto, D. Lahiri, and A. Agarwal, Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon 50 (2012), pp. 4068–4077. doi: 10.1016/j.carbon.2012.04.054
  • A.J. Albaaji, Development of soft magnetic alloy by nanomaterials, Ph.D., Cardiff University, Wales, 2017.
  • C. Ramirez, F.M. Figueiredo, P. Miranzo, P. Poza, and M.I. Osendi, Graphene nanoplatelet/silicon nitride composites with high electrical conductivity. Carbon 50 (2012), pp. 3607–3615. doi: 10.1016/j.carbon.2012.03.031
  • N. Kucuk, I. Kucuk, M. Cakir, and S. Kaya Keles, Synthesis, thermoluminescence and dosimetric properties of La-doped zinc borates. J. Lumin 139 (2013), pp. 84–90. doi: 10.1016/j.jlumin.2013.02.027
  • A. Longo, R. Verucchi, L. Aversa, R. Tatti, A. Ambrosio, E. Orabona, U. Coscia, G. Carotenuto, and P. Maddalena, Graphene oxide prepared by graphene nanoplatelets and reduced by laser treatment. Nanotechnology 28 (2017), pp. 224002. doi: 10.1088/1361-6528/aa6c3c
  • K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst 44 (2011), pp. 1272–1276. doi: 10.1107/S0021889811038970
  • A. Joshi, S. Datar, and S.N. Kale, Observation of magnetism in La0.7Sr0.3MnO3-graphene nanoribbons complex: a probable magnetoelectronic material study. Mater. Res. Express 4 (2017), pp. 075050. doi: 10.1088/2053-1591/aa7d26
  • A. Arrott, Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev 108 (1957), pp. 1394–1396. doi: 10.1103/PhysRev.108.1394
  • B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phy. Lett 12 (1964), pp. 16–17. doi: 10.1016/0031-9163(64)91158-8
  • J.Y. Law, V. Franco, L.M. Moreno-Ramirez, A. Conde, D.Y. Karpenkov, I. Radulov, K.P. Skokov, and O. Gutfleisch, A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat. Commun 9 (2018), pp. 2680. doi: 10.1038/s41467-018-05111-w
  • V. Basso, M. Küpferling, C. Curcio, C. Bennati, A. Barzca, M. Katter, M. Bratko, E. Lovell, J. Turcaud, and L.F. Cohen, Specific heat and entropy change at the first order phase transition of La(Fe-Mn-Si)13-H compounds. J. Appl. Phys 118 (2015), pp. 053907. doi: 10.1063/1.4928086
  • T. Hashimoto, T. Numasawa, M. Shino, and T. Okada, Magnetic refrigeration in the temperature range from 10 K to room temperature: the ferromagnetic refrigerants. Cryogenics 21 (1981), pp. 647–653. doi: 10.1016/0011-2275(81)90254-X
  • B.R. Dahal, K. Schroeder, M.M. Allyn, R.J. Tackett, Y. Huh, and P. Kharel, Near-room-temperature magnetocaloric properties of La1−xSrxMnO3 (x = 0.11, 0.17, and 0.19) nanoparticles. Mater. Res. Express 5 (2018), pp. 106103. doi: 10.1088/2053-1591/aadabd
  • T.P. Gavrilova, I.F. Gilmutdinov, J.A. Deeva, T.I. Chupakhina, N.M. Lyadov, I.A. Faizrakhmanov, F.O. Milovich, Y.V. Kabirov, and R.M. Eremina, Magnetic and magnetocaloric properties of (1−x)La0.7Sr0.3MnO3/xNaF composites. J. Magn. Magn. Mater 467 (2018), pp. 49–57. doi: 10.1016/j.jmmm.2018.07.047
  • W.J. Lu, X. Luo, C.Y. Hao, W.H. Song, and Y.P. Sun, Magnetocaloric effect and Griffiths-like phase in La0.67Sr0.33MnO3 nanoparticles. J. Appl. Phys 104 (2008), pp. 113908. doi: 10.1063/1.3037236
  • M. Földeàki, R. Chahine, and T.K. Bose, Magnetic measurements: A powerful tool in magnetic refrigerator design. J. Appl. Phys 77 (1995), pp. 3528–3537. doi: 10.1063/1.358648
  • K.A. Gschneidner and V.K. Pecharsky, Jr., Magnetocaloric materials. Annu. Rev. Mater. Res. 30 (2000), pp. 387–429.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.