211
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Specific resistivity of dislocations and vacancies for super-pure aluminium at 4.2 K determined in-situ and post-recovery deformation and correlated to flow stress

, ORCID Icon, & ORCID Icon
Pages 2770-2788 | Received 14 Dec 2018, Accepted 24 Jun 2019, Published online: 17 Jul 2019

References

  • M. Niewczas, Intermittent plastic flow of single crystals: Central problems in plasticity: A review, Mat. Sci. Tech. 30 (2014), pp. 739–757. doi: 10.1179/1743284713Y.0000000492
  • W. Thomson, The Bakerian lecture: On the electro-dynamic qualities of metals, Phil. Trans. Roy. Soc. Lond. 146 (1856), pp. 649–751. doi: 10.1098/rstl.1856.0031
  • M.B. Bever, D.L. Holt and A.L. Titchener, The stored energy of cold work, Prog. Mater. Sci. 17 (1973), pp. 5–177. doi: 10.1016/0079-6425(73)90001-7
  • J.F. Nicholas, The dissipation of energy during plastic deformation, Acta Metall. 7 (1959), pp. 544–548. doi: 10.1016/0001-6160(59)90190-7
  • Z.S. Basinski and S. Saimoto, Resistivity of deformed crystals, Canadian J. Phys. 45 (1967), pp. 1161–1176. doi: 10.1139/p67-085
  • Z.S. Basinski, M. Sahoo and S. Saimoto, Resistivity change with deformation of high purity Cu crystals and its subsequent recovery, Acta Metall. 25 (1977), pp. 657–665. doi: 10.1016/0001-6160(77)90008-6
  • P.B. Hirsch, Extended jogs in dislocations in face-centred cubic metals, Philos. Mag. 7 (1962), pp. 67–93. doi: 10.1080/14786436208201859
  • M. Niewczas, Z.S. Basinski, S.J. Basinski and J.D. Embury, The deformation of copper single crystals to large strains at 4.2 K, Part I. Mechanical response and electrical resistivity, Philos. Mag. A 81 (2001), pp. 1121–1142. doi: 10.1080/01418610108214432
  • M. Niewczas, Z.S. Basinski and J.D. Embury, The deformation of copper single crystals to large strains at 4.2 K, Part II. TEM observations of defect structure, Philos. Mag. A 81 (2001), pp. 1143–1159. doi: 10.1080/01418610108214433
  • H. Ohkubo, Y. Shimomura, I. Mukouda, K. Sugio and M. Kiritani, Formation of vacancy clusters in deformed thin films of Al-Mg and Al-Cu dilute alloys, Mater. Sci. Eng. A 350 (2003), pp. 30–36. doi: 10.1016/S0921-5093(02)00700-1
  • J.D. Livingston, The density and distribution of dislocations in deformed copper crystals, Acta Metall. 10 (1962), pp. 229–239. doi: 10.1016/0001-6160(62)90120-7
  • S. Saimoto, Dynamic dislocation-defect analysis, Philos. Mag. 86 (2006), pp. 4213–4233. doi: 10.1080/14786430500367347
  • S. Saimoto and B.J. Diak, Point defect generation, nano-void formation and growth. I. validation, Philos. Mag. 92 (2012), pp. 1890–1914. doi: 10.1080/14786435.2012.661479
  • M.A. Singh, S. Saimoto, M.R. Langille, J. Lévesque, K. Inal and A.R. Wolf, Small-angle X-ray scattering of deformation –induced nanovoids in AA6063 aluminum alloy, Philos. Mag. 97 (2017), pp. 2496–2513. doi: 10.1080/14786435.2017.1340684
  • S. Saimoto, B.J. Diak and D.J. Lloyd, Point defect generation, nano-void formation and growth. II. Criterion for ductile failure, Philos. Mag. 92 (2012), pp. 1914–1936.
  • M. Niewczas and D.-Y. Park, Flow stress and electrical resistivity in plastically deformed Al subjected to intermittent annealing, Mater. Sci. Eng. A 706 (2017), pp. 256–268. doi: 10.1016/j.msea.2017.09.003
  • S. Saimoto and P. Van Houtte, Constitutive relation based on Taylor slip analysis to replicate work-hardening evolution, Acta Mater. 59 (2011), pp. 602–612. doi: 10.1016/j.actamat.2010.09.065
  • D.-Y. Park and M. Niewczas, Plastic deformation of Al and AA5754 between 4.2 and 295 K, Mater. Sci. Eng. A 491 (2008), pp. 88–102. doi: 10.1016/j.msea.2008.01.065
  • M. Jobba, R.K. Mishra and M. Niewczas, Flow stress and work-hardening behaviour of Al-Mg binary alloys, Int. J. Plast. 65 (2015), pp. 43–60. doi: 10.1016/j.ijplas.2014.08.006
  • S. Saimoto, M.R. Langille and M. Niewczas, Forensic analyses of stress-strain diagrams to evaluate contributions from microstructure, Mater. Sci. Forum 941 (2018), pp. 2270–2277. doi: 10.4028/www.scientific.net/MSF.941.2270
  • S. Saimoto, Deformation kinetics and constitutive relations analyses of bifurcation in work-hardening of face-centred cubic metals at cryogenic temperatures, Acta Mater. 174 (2019), pp. 43–52. doi: 10.1016/j.actamat.2019.05.029
  • R.P. Carreker and W.R. Hibbard, Tensile deformation of high-purity copper as a function of temperature, strain rate and grain size, Acta Metall. 1 (1953), pp. 656–663. doi: 10.1016/0001-6160(53)90022-4
  • Z.S. Basinski, J.S. Dugdale and A. Howie, The electrical resistivity of dislocations, Philos. Mag. 8 (1963), pp. 1989–1997. doi: 10.1080/14786436308209092
  • A.J.E. Foreman, The bowing of dislocation segment, Philos. Mag. 15 (1967), pp. 1033–1021. doi: 10.1080/14786436708221645
  • G. Rider and C.T.B. Foxon, An experimental determination of electrical resistivity of dislocations in aluminum, Philos. Mag. 13 (1966), pp. 289–303. doi: 10.1080/14786436608212607
  • A. Deschamps, M. Niewczas, F. Bley, Y. Brechet, J.D. Embury, L. Le Sinq, F. Livet and J.P. Simon, Low temperature dynamic precipitation in a supersaturated Al-Zn-Mg alloy and related strain hardening, Philos. Mag. A 79 (1999), pp. 2485–2504. doi: 10.1080/01418619908214295
  • H. Wang, D.S. Xu, R. Yang and P. Veyssiere, The formation of stacking fault terahedra in Al and Cu I. dipole annihilation and the nucleation stage, Acta Mater. 59 (2011), pp. 1–9. II. SFT growth by successive absorption of vacancies generated by dipole annihilation, Acta Mater. 59 (2011) pp. 10–18. doi: 10.1016/j.actamat.2010.07.046
  • Y. Fukai, Electrical resistivity due to vacancies in aluminium, Philos. Mag. 20 (1969), pp. 1277–1280. doi: 10.1080/14786436908228212
  • A. Khellaf, A. Seeger and R.M. Emrick, Quenching studies of lattice vacancies in high-purity aluminum, Mater. Trans. 43 (2002), pp. 186–198. doi: 10.2320/matertrans.43.186
  • S. Saimoto, J. Cooley, H. Larsen and C. Scholler, Kinetic analysis of dynamic defect pinning in aluminum initiated by strain-rate changes, Philos. Mag. 87 (2009), pp. 853–868. doi: 10.1080/14786430902791730
  • L. Proville, D. Rodney, Y. Brechet and G. Martin, Atomic-scale study of dislocation glide in a model solid solution, Philos. Mag. 86 (2006), pp. 3893–3920. doi: 10.1080/14786430600567721
  • F.R. Brotzen and A. Seeger, Diffusion near dislocations, dislocation arrays and tensile cracks, Acta Metall. 37 (1989), pp. 2985–3000. doi: 10.1016/0001-6160(89)90334-9
  • L.M. Brown, A dipole model for the cross-slip of screw dislocations in FCC metals, Philos. Mag. A 82 (2002), pp. 1691–1711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.