449
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Atomistic simulation of the stacking fault energy and grain shape on strain hardening behaviours of FCC nanocrystalline metals

, ORCID Icon, , , , ORCID Icon & show all
Pages 2818-2840 | Received 12 Mar 2019, Accepted 30 Jun 2019, Published online: 25 Jul 2019

References

  • C.C. Koch, D.G. Morris, K. Lu and A. Inoue, Ductility of nanostructured materials. MRS Bull. 24 (1999), pp. 54–58. doi: 10.1557/S0883769400051551
  • R. Dou and B. Derby, The strength of gold nanowire forests. Scripta Mater 59 (2008), pp. 151–154. doi: 10.1016/j.scriptamat.2008.02.046
  • B. Wu, A. Heidelberg and J.J. Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater 4 (2005), pp. 525–529. doi: 10.1038/nmat1403
  • J. Schiøtz and K.W. Jacobsen, A maximum in the strength of nanocrystalline copper. Science 301( ) (2003), pp. 1357–1359. doi: 10.1126/science.1086636
  • R.J. Asaro, P. Krysl and B. Kad, Deformation mechanism transitions in nanoscale fcc metals. Phil. Mag. Lett 83 (2003), pp. 733–743. doi: 10.1080/09500830310001614540
  • J. Schiøtz, Atomic-scale modeling of plastic deformation of nanocrystalline copper. Scripta Mater 51 (2004), pp. 837–841. doi: 10.1016/j.scriptamat.2004.05.013
  • P. Gu, M. Dao and Y.T. Zhu, Strengthening at nanoscaled coherent twin boundary in f.c.c. metals. Philos. Mag 94 (2014), pp. 1249–1262. doi: 10.1080/14786435.2014.885138
  • Y. Zhu, Q.Q. Qin, F. Xu, F.R. Fan, Y. Ding, T. Zhang, B.J. Wiley and Z.L. Wang, Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments. Phys. Rev. B 85 (2012), pp. 045443. doi: 10.1103/PhysRevB.85.045443
  • J. Luo, Z. Mei, W.H. Tian and Z.R. Wang, Diminishing of work hardening in electroformed polycrystalline copper with nano-sized and uf-sized twins. Mater. Sci. Eng. A 441 (2006), pp. 282–290. doi: 10.1016/j.msea.2006.08.051
  • G. Yang, X. Guo, G.J. Weng, L.L. Zhu and R. Ji, Simulation of ballistic performance of coarse-grained metals strengthened by nanotwinned regions. Model. Simul. Mater. Sci. Eng 23 (2015), pp. 085009. doi: 10.1088/0965-0393/23/8/085009
  • X.Y. Li, Y.J. Wei, L. Lu, K. Lu and H.J. Gao, Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464 (2010), pp. 877–880. doi: 10.1038/nature08929
  • X.C. Liu, H.W. Zhang and K. Lu, Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342 (2013), pp. 337–340. doi: 10.1126/science.1242578
  • W. Wang, F.P. Yuan and X.L. Wu, Smaller critical size and enhanced strength by nano-laminated structure in nickel. Comput. Mater. Sci 110 (2015), pp. 83–90. doi: 10.1016/j.commatsci.2015.08.001
  • J.J. Li and A.K. Soh, Enhanced ductility of surface nano-crystallized materials by modulating grain size gradient. Model. Simul. Mater. Sci. Eng 20 (2012), pp. 085002. doi: 10.1088/0965-0393/20/8/085002
  • T. Hu, K. Ma, T.D. Topping, B. Saller, A. Youseflani, J.M. Schoenung and E.J. Lavernia, Improving the tensile ductility and uniform elongation of high-strength ultrafine-grained Al alloys by lowering the grain boundary misorientation angle. Scripta Mater 78-79 (2014), pp. 25–28. doi: 10.1016/j.scriptamat.2014.01.020
  • J.R. Greer, W.C. Oliver and W.D. Nix, Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53 (2005), pp. 1821–1830. doi: 10.1016/j.actamat.2004.12.031
  • M.D. Uchic, D.M. Dimiduk, J.N. Florando and W.D. Nix, Sample dimensions influence strength and crystal plasticity. Science 305 (2004), pp. 986–989. doi: 10.1126/science.1098993
  • J.W. Wang, Z. Zeng, C.R. Weinberger, Z. Zhang, T. Zhu and S.X. Mao, In situ atomic-scale observation of twinning dominated deformation in nanoscale body-centred cubic tungsten. Nat. Mater 14 (2015), pp. 594–600. doi: 10.1038/nmat4228
  • X.D. Han, K. Zheng, Y.F. Zhang, X.N. Zhang, Z. Zhang and Z.L. Wang, Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater 19 (2007), pp. 2112–2118. doi: 10.1002/adma.200602705
  • L.H. Wang, P. Liu, P.F. Guan, M.J. Yang, J.L. Sun, Y.Q. Cheng, A. Hirata, Z. Zhang, E. Ma, M.W. Chen and X.D. Han, In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun 4 (2013), pp. 2413. doi: 10.1038/ncomms3413
  • L. Yuan, P. Jing, D.B. Shan and B. Guo, Plastic deformation behaviour of layer grained silver polycrystalline from atomistic simulation. Philos. Mag 96 (2016), pp. 2397–2411. doi: 10.1080/14786435.2016.1201220
  • D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee and H. Gleiter, Deformation of nanocrystalline materials by molecular-dynamics simulation: Relationship to experiments? Acta Mater. 53 (2005), pp. 1–40. doi: 10.1016/j.actamat.2004.08.045
  • X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, Y.T. Zhu, F. Zhou, E.J. Lavernia and H.F. Xu, Formation mechanism of wide stacking faults in nanocrystalline Al. Appl. Phys. Lett 84 (2004), pp. 3564–3566. doi: 10.1063/1.1734689
  • A. Rohatgi, K.S. Vecchio and G.T. Gray, The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery. Metal. Mater. Trans. A 32 (2001), pp. 135–145. doi: 10.1007/s11661-001-0109-7
  • Z.X. Wu, Y.W. Zhang and D.J. Srolovitz, Deformation mechanisms, length scales and optimizing the mechanical properties of nanotwinned metals. Acta Mater. 59 (2011), pp. 6890–6900. doi: 10.1016/j.actamat.2011.07.038
  • L.E. Murr, Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, MA, 1975.
  • Y. Mishin, D. Farkas, M.J. Mehl and D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59 (1999), pp. 3393–3407. doi: 10.1103/PhysRevB.59.3393
  • Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63 (2001), pp. 224106. doi: 10.1103/PhysRevB.63.224106
  • P.L. Williams, Y. Mishin and J.C. Hamilton, An embedded-atom potential for the Cu-Ag system. Model. Simul. Mater. Sci. Eng 14 (2006), pp. 817–833. doi: 10.1088/0965-0393/14/5/002
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys 117 (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model. Simul. Mater. Sci. Eng 18 (2010), pp. 015012. doi: 10.1088/0965-0393/18/1/015012
  • J.D. Honeycutt and H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem 91 (1987), pp. 4950–4963. doi: 10.1021/j100303a014
  • H. Tsuzuki, P.S. Branicio and J.P. Rino, Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput. Phys. Commum 177 (2007), pp. 518–523. doi: 10.1016/j.cpc.2007.05.018
  • R.G. Hoagl and S.M. Valone, Emission of dislocations from grain boundaries by grain boundary dissociation. Philos. Mag 95 (2015), pp. 112–131. doi: 10.1080/14786435.2014.987842
  • P.M. Derlet, H. Van Swygenhoven and A. Hasnaoui, Atomistic simulation of dislocation emission in nanosized grain boundaries. Philos. Mag 83 (2003), pp. 3569–3575. doi: 10.1080/14786430310001599397
  • D. Hull and D.J. Bacon, Introduction to Dislocations, 5th ed., Elsevier Science & Technology, 2011.
  • L.H. Wang, X.D. Han, P. Liu, Y.H. Yue, Z. Zhang and E. Ma, In situ observation of dislocation behavior in nanometer grains. Phys. Rev. Lett 105 (2010), pp. 135501. doi: 10.1103/PhysRevLett.105.135501
  • A.G. Froseth, P.M. Derlet and H. Van Swygenhoven, Dislocations emitted from nanocrystalline grain boundaries: Nucleation and splitting distance. Acta Mater. 52 (2004), pp. 5863–5870. doi: 10.1016/j.actamat.2004.09.001
  • V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee and H. Gleiter, Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater 1 (2002), pp. 45–48. doi: 10.1038/nmat700
  • X.L. Wu, Y.T. Zhu, Y.G. Wei and Q. Wei, Strong strain hardening in nanocrystalline nickel. Phys. Rev. Lett 103 (2009), pp. 205504. doi: 10.1103/PhysRevLett.103.205504
  • X.Y. Li, Y.J. Wei, W. Yang and H.J. Gao, Competing grain-boundary-and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum. P. Natl. Acad. Sci. USA 106 (2009), pp. 16108–16113. doi: 10.1073/pnas.0901765106
  • T. Shimokawa, A. Nakatani and H. Kitagawa, Grain-size dependence of the relationship between intergranular and intragranular deformation of nanocrystalline Al by molecular dynamics simulations. Phys. Rev. B 71 (2005), pp. 224110. doi: 10.1103/PhysRevB.71.224110
  • X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He and Y.T. Zhu, Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl. Phys. Lett 83 (2003), pp. 632–634. doi: 10.1063/1.1594836
  • Z.W. Shan, J.M.K. Wiezorek, E.A. Stach, D.M. Follstaedt, J.A. Knapp and S.X. Mao, Dislocation dynamics in nanocrystalline nickel. Phys. Rev. Lett 98 (2007), pp. 095502. doi: 10.1103/PhysRevLett.98.095502
  • X.L. Wu and Y.T. Zhu, Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries. Appl. Phys. Lett 89 (2006), pp. 031922. doi: 10.1063/1.2227639
  • Z.W. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt and S.X. Mao, Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305 (2004), pp. 654–657. doi: 10.1126/science.1098741
  • L. Lu, X. Chen, X. Huang and K. Lu, Revealing the maximum strength in nanotwinned copper. Science 323 (2009), pp. 607–610. doi: 10.1126/science.1167641
  • H. Hahn, P. Mondal and K.A. Padmanabhan, Plastic deformation of nanocrystalline materials. Nanostruct. Mater 9 (1997), pp. 603–606. doi: 10.1016/S0965-9773(97)00135-9
  • L.H. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M.W. Chen and X.D. Han, Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun 5 (2014), pp. 4402. doi: 10.1038/ncomms5402
  • L.H. Wang, J. Teng, X.C. Sha, J. Zhou, Z. Zhang and X.D. Han, Plastic deformation through dislocation saturation in ultrasmall Pt nanocrystals and its in situ atomistic mechanisms. Nano Lett. 17 (2017), pp. 4733–4739. doi: 10.1021/acs.nanolett.7b01416
  • L.H. Wang, P.F. Guan, J. Teng, P. Liu, D.K. Chen, W.Y. Xie, D.L. Kong, S.B. Zhang, T. Zhu, Z. Zhang, E. Ma, M.W. Chen and X.D. Han, New twinning route in face-centered cubic nanocrystalline metals. Nat. Commun 8 (2017), pp. 2142. doi: 10.1038/s41467-017-02393-4
  • D.A. Hughes and N. Hansen, Exploring the limit of dislocation based plasticity in nanostructured meals. Phys. Rev. Lett 112 (2014), pp. 135504. doi: 10.1103/PhysRevLett.112.135504
  • L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian and K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science 304 (2004), pp. 422–426. doi: 10.1126/science.1092905

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.