318
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Mechanics of plastic flow past a narrow-angle wedge indenter

ORCID Icon
Pages 2883-2903 | Received 05 Feb 2019, Accepted 05 Jul 2019, Published online: 23 Jul 2019

References

  • D. Balint, V. Deshpande, A. Needleman and E. Van der Giessen, Discrete dislocation plasticity analysis of the wedge indentation of films. J. Mech. Phys. Solids 54 (2006), pp. 2281–2303.
  • J.W. Kysar, Y.X. Gan, T.L. Morse, X. Chen and M.E. Jones, High strain gradient plasticity associated with wedge indentation into face-centered cubic single crystals: Geometrically necessary dislocation densities. J. Mech. Phys. Solids 55 (2007), pp. 1554–1573.
  • G. Pharr, E. Herbert and Y. Gao, The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40 (2010), pp. 271–292.
  • R. Hill, On the mechanics of cutting metal strips with knife-edged tools. J. Mech. Phys. Solids 1 (1953), pp. 265–270.
  • S. Meguid and I. Collins, On the mechanics of the oblique cutting of metal strips with knife-edged tools. Int. J. Mech. Sci. 19 (1977), pp. 361–371.
  • J. Chakrabarty, Theory of Plasticity, 3rd Edition, Butterworth-Heinemann, London, 2006.
  • R. Hill, E.H. Lee and S.J. Tupper, The theory of wedge indentation of ductile materials. Proc. Royal Soc. A 188 (1947), pp. 273–289.
  • D.S. Dugdale, Wedge indentation experiments with cold worked metals. J. Mech. Phys. Solids 2 (1953), pp. 14–26.
  • J. Grunzweig, I.M. Longman and N.J. Petch, Calculations and measurements on wedge indentation. J. Mech. Phys. Solids 2 (1954), pp. 81–86.
  • A. Widjaja, E. Van der Giessen and A. Needleman, Discrete dislocation analysis of the wedge indentation of polycrystals. Acta Mater. 55 (2007), pp. 6408–6415.
  • Y. Saito, M.S. Oztop and J.W. Kysar, Wedge indentation into elastic-plastic single crystals. 2: Simulations for face-centered cubic crystals. Int. J. Plasticity 28 (2012), pp. 70–87.
  • M. Lewandowski and S. Stupkiewicz, Size effects in wedge indentation predicted by a gradient enhanced crystal-plasticity model. Int. J. Plasticity 109 (2018), pp. 54–78.
  • L.E. Samuels and T.O. Mulhearn, An experimental investigation of the deformed zone associated with indentation hardness impressions. J. Mech. Phys. Solids 5 (1957), pp. 125–134.
  • T.O. Mulhearn, The deformation of metals by Vickers-type pyramidal indenters. J. Mech. Phys. Solids 7 (1959), pp. 85–88.
  • F.J. Lockett, Indentation of a rigid/plastic material by a conical indenter. J. Mech. Phys. Solids 11 (1963), pp. 345–355.
  • A.G. Atkins and D. Tabor, Plastic indentation in metals with cones. J. Mech. Phys. Solids 13 (1965), pp. 149–164.
  • T.G. Murthy, C. Saldana, M. Hudspeth and R. M’Saoubi, Deformation field heterogeneity in punch indentation. Proc. Royal Soc. A 470 (2014), pp. 20130807.
  • M.M. Chaudhri, Subsurface deformation patterns around indentations in work-hardened mild steel. Philos. Mag. Lett. 67 (1993), pp. 107–115.
  • M.M. Chaudhri, Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper. Acta Mater. 46 (1998), pp. 3047–3056.
  • S. Biwa and B. Storåkers, An analysis of fully plastic Brinell indentation. J. Mech. Phys. Solids 43 (1995), pp. 1303–1333.
  • S.D. Mesarovic and N.A. Fleck, Spherical indentation of elastic-plastic solids. Proc. Royal Soc. A 455 (1999), pp. 2707–2728.
  • D. Anderson, A. Warkentin and R. Bauer, Simulation of deep spherical indentation using Eulerian finite element methods. J. Tribol. 133 (2011), pp. 021401.
  • A. Bhattacharya and W. Nix, Finite element simulation of indentation experiments. Int. J. Solids Struct. 24 (1988), pp. 881–891.
  • A. Giannakopoulos, P.-L. Larsson and R. Vestergaard, Analysis of Vickers indentation. Int. J. Solids Struct. 31 (1994), pp. 2679–2708.
  • K. Jayadevan and R. Narasimhan, Finite element simulation of wedge indentation. Comput. Struct. 57 (1995), pp. 915–927.
  • M. Mata and J. Alcala, The role of friction on sharp indentation. J. Mech. Phys. Solids 52 (2004), pp. 145–165.
  • K.E. Prasad, N. Chollacoop and U. Ramamurty, Role of indenter angle on the plastic deformation underneath a sharp indenter and on representative strains: An experimental and numerical study. Acta Mater. 59 (2011), pp. 4343–4355.
  • E. Hazell, Numerical and experimental studies of shallow cone penetration in clay, Ph.D. thesis, University of Oxford, Oxford, U.K., 2008.
  • N.K. Sundaram, Y. Guo and S. Chandrasekar, Modes of deformation and weak boundary conditions in wedge indentation. MRS Commun. 2 (2012), pp. 47–50.
  • J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran, Arbitrary Lagrangian-Eulerian methods, in Encyclopedia of Computational Mechanics Vol. 1: Fundamentals, Stein E., de Borst R., Hughes T., eds., John Wiley & Sons, New York, 2004. pp. 413. Ch. 14.
  • N.K. Sundaram, Deformation field in deep flat punch indentation and the persistence of dead-metal zones. Philos. Mag. 98 (2018), pp. 2326–2344.
  • F.J. Zerilli and R.W. Armstrong, Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61 (1987), pp. 1816–1825.
  • Dassault-Systemes, Abaqus Analysis User Manual, Dassault Systemes Simulia Corporation, Providence, RI, USA, 2012.
  • Y.-T. Cheng and C.-M. Cheng, Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R Rep. 44 (2004), pp. 91–149.
  • H.L.D. Pugh and D. Green, The effect of hydrostatic pressure on the plastic flow and fracture of metals. Proc. Inst. Mech. Eng. 179 (1964), pp. 415–437.
  • I.E. French and P.F. Weinrich, The influence of hydrostatic pressure on the tensile deformation and fracture of copper. Metall. Trans. A 6 (1975), pp. 785–790.
  • M. Elices, G. Guinea, J. Gomez and J. Planas, The cohesive zone model: advantages, limitations and challenges. Eng. Fract. Mech. 69 (2002), pp. 137–163.
  • P. Woelke, M. Shields and J. Hutchinson, Cohesive zone modeling and calibration for mode I tearing of large ductile plates. Eng. Fract. Mech. 147 (2015), pp. 293–305.
  • L. Xue and T. Wierzbicki, Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng. Fract. Mech. 75 (2008), pp. 3276–3293.
  • A.A. Benzerga and J.-B. Leblond, Ductile fracture by void growth to coalescence. in: Adv. Appl. Mech. 44 (Elsevier, 2010), pp. 169–305.
  • V. Madhavan, S. Chandrasekar and T. Farris, Machining as a wedge indentation. J. Appl. Mech. 67 (2000), pp. 128–139.
  • J. Huang and J. Black, An evaluation of chip separation criteria for the FEM simulation of machining. J. Manuf. Sci. E 118 (1996), pp. 545–554.
  • T. Marusich and M. Ortiz, Modelling and simulation of high-speed machining. Int. J. Numer. Meth. Eng .38 (1995), pp. 3675–3694.
  • A. Atkins, Modelling metal cutting using modern ductile fracture mechanics: Quantitative explanations for some longstanding problems. Int. J. Mech. Sci. 45 (2003), pp. 373–396.
  • P. Rosa, P. Martins and A. Atkins, Revisiting the fundamentals of metal cutting by means of finite elements and ductile fracture mechanics. Int. J. Mach. Tool. Manu. 47 (2007), pp. 607–617.
  • T. Sugihara, A. Udupa, and K. Viswanathan, A plastic boundary layer in wedge indentation of aluminum. Mater. Trans. (2019), pp. MD201907. https://doi.org/10.2320/matertrans.MD201907.
  • A. Udupa, N. Sundaram, T. Sugihara and S. Chandrasekar, Direct in situ observation of deformation modes in wedge indentation of metals. Mater. Trans. (in press).
  • R. Phillips, Diamond knife ultra microtomy of metals and the structure of microtomed sections. Br. J. Appl. Phys. 12 (1961), pp. 554–558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.